

Title

Role of host ciliate Paramecium bursaria mitochondria and trichocysts for symbiotic Chlorella variabilis attachment beneath the host cell cortex

Author(s) Yuuki Kodama, Masahiro Fujishima

Journal FEMS Microbiology Letters, Volume 370, 2023, fnad088

Published 02 September 2023

URL (The Version of Record) https://doi.org/10.1093/femsle/fnad088

> この論文は出版社版でありません。 引用の際には出版社版をご確認のうえご利用ください。

This version of the article has been accepted for publication, but is not the Version of Record.

http://mc.manuscriptcentral.com/fems

Role of host ciliate *Paramecium bursaria* mitochondria and trichocysts for symbiotic *Chlorella variabilis* attachment beneath the host cell cortex

Journal:	FEMS Microbiology Letters
Manuscript ID	FEMSLE-23-03-0064.R2
Manuscript Type:	Research Letter
Keywords:	Algal reattachment, Chlorella variabilis, Endosymbiosis, Mitochondria, Paramecium bursaria, Trichocyst
Please select the most appropriate subject section for your submission from the drop down list. For full section descriptions please refer to the Author guidelines.:</a 	Environmental Microbiology and Microbial Ecology (Editor: Tim Daniell)

1	Role of host ciliate Paramecium bursaria mitochondria and trichocysts for
2	symbiotic Chlorella variabilis attachment beneath the host cell cortex
3	
4	Mitochondria and trichocysts of the ciliate Paramecium bursaria
5	
6	One sentence summary: Although the host mitochondria of ciliate <i>Paramecium</i>
7	bursaria are near symbiotic algae during reattachment, this does not mean that the algae
8	can exist if mitochondria are present, indicating some localization bias within the host
9	cell.
10	
11	Abstract
12	Symbiotic Chlorella variabilis is encased in the perialgal vacuole (PV) membrane of
13	ciliate Paramecium bursaria. The PV membrane is stably anchored below the host cell
14	cortex by adhesion to host mitochondria. Host trichocysts, which are defensive
15	organelles against predators, are present in the mitochondria and PV membrane vicinity.
16	The mechanism by which PV attaches beneath the host cell cortex remains unknown.
17	When <i>P. bursaria</i> is centrifuged at high speed, the symbiotic algae are displaced from
18	the host cell cortex and concentrate at the posterior end. When centrifugation is stopped,
19	the dislocated algae reattach beneath the host cell cortex with fast cytoplasmic
20	streaming. The densities of mitochondria and trichocysts before and after centrifugation
21	were compared using indirect immunofluorescence microscopy with monoclonal
22	antibodies. Almost all trichocysts were shed by high-speed centrifugation, but

dislocated algae could reattach even in the absence of trichocysts. In contrast, host mitochondria were unaffected in localization and number, and the dislocated algae also reattached. These findings suggest trichocysts are unnecessary for algal re-localization and that mitochondria are colocalized with the algae. However, many mitochondria were also present in the cell's anterior region without symbiotic algae. Therefore, not all areas with mitochondria contained algae, but there was a localization bias within the host cell. Keywords: Algal reattachment, Chlorella variabilis, Endosymbiosis, Mitochondria, Paramecium bursaria, Trichocyst Introduction Paramecium bursaria, a freshwater ciliate, is a symbiotic organism that establishes endosymbiotic relationships with *Chlorella* spp. Each symbiotic alga is enclosed in a perialgal vacuole (PV) derived from the host digestive vacuole (DV), which protects the alga from lysosomal fusion (Gu et al. 2002; Karakashian and Rudzinska 1981). This relationship between ciliates and algae is mutualistic; the host cell supplies algae with nitrogen and oxygen (Albers et al. 1982, 1985; Reisser 1976, 1980), whereas the algae provide the host with photosynthetic products (Brown et al. 1974; Reisser 1986) and

- 42 CO₂ (Reisser 1980). However, both *P. bursaria* and symbiotic algae can live without
- 43 their partners. The re-establishment of endosymbiosis between algae-free (removed) *P*.
- *bursaria* cells and symbiotic *Chlorella* cells isolated from algae-bearing hosts can be

2
3
4
5
6
7
/
8
9
10
11
12
13
14
15
16
10
17
18
19
20
21
22
23
24
25
25
20
27
28
29
30
31
32
33
34
35
26
30
3/
38
39
40
41
42
43
44
77 15
45
40
4/
48
49
50
51
52
53
54
54
33 56
56
57
58
59

1

45	induced (Kodama and Fujishima 2010). In addition to their original symbiotic algae,
46	algae-free P. bursaria cells can be reinfected with bacteria and yeast that are retained in
47	the cytoplasm (Görtz 1982; Watanabe et al. 2022). The nuclear genomes of the
48	symbiotic Chlorella variabilis (Blanc et al. 2010) and the host P. bursaria have been
49	explored (Cheng et al. 2020); these organisms are now considered models for
50	endosymbiosis research.
51	Using pulse-labeling and chasing of algae-free paramecia for 1.5 min with
52	symbiotic algae that were isolated from algae-bearing P. bursaria, four important
53	cytological events have been identified. These events are necessary for the
54	establishment of endosymbiosis and the timing of each mechanism during the infection
55	process (Kodama and Fujishima 2010). 1) Within 3 min of algal mixing, part of the
56	algae has resistance to the host's lysosomal digestive enzymes in the DVs. 2) Within 30
57	min of mixing, algae in the DV begin budding from the DV membrane into the
58	cytoplasm. 3) Within 15 min of budding from the DV, the DV membrane enclosing a
59	single green Chlorella differentiates into a PV membrane. 4) The PV membrane
60	translocates beneath the host cell cortex.
61	The PV appears to localize near the host mitochondria and trichocysts. In previous

studies, monoclonal antibodies against *P. bursaria* trichocysts and mitochondria were
obtained; both mitochondrial and trichocyst densities of algae-bearing *P. bursaria* were
significantly lower than those of algae-free cells (Kodama and Fujishima 2011, 2022).
These results indicate that symbiotic algae compete for their attachment sites with
preexisting trichocysts and mitochondria, and algae have the ability to ensure algal

Page 5 of 80

FEMS Microbiology Letters

attachment sites beneath the host cell cortex (Kodama and Fujishima 2011). Furthermore, high-speed centrifugation can induce rapid algal detachment from the host cell cortex and concentrates the algae in the posterior end of the host cell (Kodama and Fujishima 2013). Within 10 min of centrifugation, the detached algae recover their original positions by host rapid cytoplasmic streaming. This algal reattachment was inhibited when host cytoplasmic streaming was arrested by nocodazole. In nocodazole-treated cells, approximately 5 h was required for complete algal recovery, and the host cytoplasmic streaming had been resumed at that time. These results demonstrated that adhesion of the PV beneath the host cell cortex can be repeatedly induced and that host cytoplasmic streaming facilitates the recovery of algal attachment. However, the mechanism by which the PV attaches beneath the host cell cortex remains unknown. In this study, to investigate the mechanisms of symbiotic algal adhesion, the distribution of mitochondria and trichocysts during reattachment was examined by immunofluorescence microscopy using monoclonal antibodies against the mitochondria and trichocysts. Furthermore, mitochondria of the anterior part of the host without symbiotic algae were also observed. Materials and methods **Organism cultivation**

Paramecium bursaria strain Yad1g1N cells (syngen B1 or R3, mating type I) harboring
the symbiotic *Chlorella variabilis* strain 1N were used (Kodama and Fujishima 2009,

88 2011). *Paramecium* cells were cultivated in red pea (*Pisum sativum*) extract culture

89	medium (Tsukii et al. 1995) with a modified Dryl's solution (Dryl 1959; KH ₂ PO ₄ was
90	used instead of $NaH_2PO_4 \cdot 2H_2O$) and inoculated with <i>Klebsiella aerogenes</i> (ATCC
91	35028) one day before use. The cultures were in the early stationary phase of growth
92	one day after the final feeding. All cells used in this study were in this phase.
93	Cultivation was performed in test tubes (18 mm \times 180 mm) at 25 ± 1°C under
94	fluorescent lighting at 20–30 µmol photons m ⁻² s ⁻¹ using an incandescent lamp.
95	
96	Transmission electron microscopy (TEM)
97	Algae-bearing <i>P. bursaria</i> were pre-fixed with 2% glutaraldehyde and prepared for
98	TEM, as described previously (Kodama et al. 2011). The paramecia embedded in
99	Spurr's resin (1969) were sectioned (70 nm thickness) using an ultramicrotome
100	(Reichert Ultracut S; Leica Microsystems, Vienna, Austria) with a diamond knife,
101	mounted on nickel mesh grids, and stained with lead citrate (Reynolds 1963). The
102	sections were observed using TEM (CM120; Philips) at 80 kV.
103	
104	High-speed centrifugation of <i>P. bursaria</i> cells
105	Algae-bearing P. bursaria cells were centrifuged at high speed (Kodama and Fujishima
106	2011). <i>P. bursaria</i> cells at a density of 5×10^3 cells/mL were placed in a 1.5 mL
107	microcentrifuge tube. The tube was then centrifuged using a fixed-angle rotor at 1000 \times
108	g for 1 min at $25 \pm 1^{\circ}$ C (Model 3740; Kubota Corporation, Tokyo, Japan). Before,
109	immediately after (approx. 3 min), 10 min, and 30 min after the centrifugation, aliquots
110	of <i>Paramecium</i> cells were air-dried on cover glasses (4.5 mm \times 24 mm) and fixed with

FEMS Microbiology Letters

2	
3	
4	
5	
6	
7	
, Q	
0	
9	
10	
11	
12	
13	
14	
15	
15	
16	
17	
18	
19	
20	
21	
∠ I วา	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
25	
22	
36	
37	
38	
39	
40	
41	
10	
42	
43	
44	
45	
46	
47	
48	
⊿0	
77	
50	
51	
52	
53	
54	
55	
56	
50	
5/	
58	
FΟ	

111 4% (w/v) paraformaldehyde dissolved in phosphate-buffered saline (PBS) (137 mM 112 NaCl, 2.68 mM KCl, 8.1 mM NaHPO₄·12H₂O, 1.47 mM KH₂PO₄, pH 7.2) for 10 min 113 at 4°C. 114 Indirect immunofluorescence microscopy 115 116 The cover glasses with the fixed *P. bursaria* cells were washed with PBS containing 117 0.05% (v/v) Tween 20 (PBST) for 10 min at 4°C. The cells on the cover glasses were 118 treated with a culture supernatant of hybridoma cells containing either monoclonal 119 antibodies mAb5A11E2 against trichocysts of *P. bursaria* (Kodama and Fujishima 120 2011) or mAb2B8A8H1 against mitochondria of *P. bursaria* (Kodama and Fujishima 121 2022) overnight at 4°C, washed with PBS, and treated with Alexa Fluor 488 conjugated 122 goat anti-mouse IgG (Molecular Probes Inc., Eugene, OR, USA) diluted 1000-fold with 123 PBS for 2 h at 25°C. The cover glasses were then washed with PBS and observed under 124 a differential interference contrast microscope and fluorescence microscope (BX53; 125 Olympus Corp., Tokyo, Japan). Images were acquired using an Olympus DP74 system 126 and analyzed using Olympus cellSens Dimension software. 127 128 Statistical analysis 129 Data were analyzed using the Mann-Whitney U-test in R. Reproducibility of the data 130 was confirmed by three independent experiments. 131

132 Results

2	
3	
1	
4	
5	
6	
7	
Q	
0	
9	
10	
11	
12	
12	
15	
14	
15	
16	
17	
10	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
21	
31	
32	
33	
34	
25	
22	
36	
37	
38	
30	
10	
40	
41	
42	
43	
11	
44	
45	
46	
47	
10	
40	
49	
50	
51	
52	
52	
22	
54	
55	
56	
57	
57	
58	
59	
60	

133	Transmission electron microscopy (TEM) of algae-bearing P. bursaria
134	Algae-bearing paramecia were observed using TEM (Fig. 1). As shown by the
135	arrowhead in Fig. 1, we observed mitochondria that attach to the PVs, as shown in
136	previous studies (Fujishima and Kodama 2012; Song et al. 2017). In contrast, the
137	trichosyst membrane did not attach to the PV membrane (black arrow in Fig. 1).
138	
139	Effects of high-speed centrifugation on distribution of trichocysts in
140	algae-bearing <i>P. bursaria</i> cells
141	Figure 2A shows the results obtained by indirect immunofluorescence microscopy after
142	high-speed centrifugation of algae-bearing P. bursaria cells using monoclonal
143	antibodies against trichocysts. Before centrifugation, symbiotic algae were shown
144	distributed throughout the host cell by differential interference contrast microscopy, and
145	immunofluorescence showed that the trichocysts of the algae-bearing cells were
146	localized as a ring surrounding the algae, as shown in a previous study (Kodama and
147	Fujishima 2011). Immediately after centrifugation, the symbiotic algae dislocated and
148	accumulated in the posterior region of Paramecium. As for trichocysts,
149	immunofluorescence was hardly observed in the centrifuged cells. When cells are
150	stimulated, trichocysts discharge their contents in milliseconds (Adoutte 1988).
151	Therefore, most trichocysts are discharged via high-speed centrifugation. In fact, we
152	observed many discharged trichocysts around the Parameciucm cells (Fig. 2B). The

153 monoclonal antibodies also distinguished after discharge, coinciding with findings in a

154	previous study (Kodama and Fujishima 2011) (Fig. 2B, IM). Ten minutes after
155	centrifugation, the algae completely localized beneath the host cortex, and few
156	trichocysts were observed by immunofluorescence microscopy. Thirty minutes after
157	centrifugation, trichocysts were barely observed. In fact, it was previously reported that
158	when the trichocysts are removed by treatment with lysozyme, regeneration of the
159	mature trichocysts begins at 3 h, even in the presence of lysozyme (Kodama and
160	Fujishima 2009). Therefore, it seems that 30 min are not sufficient for the recovery of
161	trichocysts. These results clearly support previous studies (Kodama and Fujishima
162	2009) that the symbiotic algae do not need trichocysts to attach beneath the host cell
163	cortex.
164	Figure 2C shows the immunofluorescence intensity of <i>P. bursaria</i> cells before (x-
165	bar, T-B), immediately after (x-bar, T-Ia), 10 min (x-bar, T-10 min), and 30 min (x-bar,
166	T-30 min) after centrifugation. The immunofluorescence intensity of the centrifuged
167	cells decreased drastically and did not increase until 30 min after centrifugation. These
168	quantitative data correspond well with the images shown in Fig. 2A.
169	
170	Effects of high-speed centrifugation on distribution of mitochondria in
171	algae-bearing <i>P. bursaria</i> cells
172	We examined the effect of high-speed centrifugation on host mitochondria by
173	immunofluorescence microscopy using the same method described above (Fig. 3).
174	Before centrifugation, immunofluorescence of mitochondria was observed around the
175	symbiotic algae. Immediately after centrifugation (approximately 3 min), the symbiotic

176	algae were dislocated, as shown above. Immunofluorescence was observed throughout
177	the cytoplasm. Note that the cortical mitochondrial immunofluorescence became strong
178	after centrifugation. This phenomenon may be due to better accessibility for
179	visualization of the labeling after detachment of the PV from the cortex. Ten and 30 min
180	after centrifugation, symbiotic algae were distributed throughout the cell because of
181	algal relocation. Immunofluorescence of mitochondria was also observed around the
182	symbiotic algae. These observations suggest that symbiotic algae do not need
183	trichocysts for their attachment but are colocalized with mitochondria, as shown by
184	TEM observations (Fig. 1).
185	Figure 3B shows the immunofluorescence intensity of algae-free <i>P. bursaria</i> cells
186	before (x-bar, M-B), immediately after (x-bar, M-Ia), 10 min (x-bar, M-10 min), and 30
187	min (x-bar, M-30 min) after centrifugation. There was almost no change in
188	immunofluorescence intensity, and no significant difference was observed between the
189	data for each time point. These quantitative data correspond well with the images shown
190	in Fig. 3A.
191	
192	Mitochondrial distribution of host anterior cortex
193	Kodama (2013) investigated the symbiotic algal distribution of 14 strains of <i>P</i> .
194	bursaria. As a result, all strains had symbiotic algae at the ventral, dorsal, and posterior
195	cortex, and some cells did not have symbiotic algae at the anterior cortex. This
196	phenomenon is not strain-, syngen-, or mating-type specific. Only 35% of the strain
197	Yad1g1N cells, also used in this experiment, had symbiotic algae at their anterior

Page 11 of 80

FEMS Microbiology Letters

19	98	cortex. This paper also reported that the artificial trichocyst-discharge experiments by
19	99	the treatment of lysozyme clarified that trichocysts of the anterior cortex are difficult to
20	00	remove. Although the high-speed centrifugation experiment clearly showed that
20	D1	trichocysts are unnecessary for algal reattachment, trichocyst-discharge difficulty of the
20	02	anterior cortex may be related to the restrict enrichment of the large PVs.
20	03	On the other hand, host mitochondria remained unchanged in localization by high-
20	04	speed centrifugation. This indicated that the presence of mitochondria may be related
20	05	for algal adhesion. To determine whether the reason for the algal difficulty in adhering
20	06	to the host anterior cortex is due to the low mitochondrial density in this area, we
20	07	examined whether there were differences in the number and distribution of
20	28	mitochondria between cells with and without symbiotic algae in their anterior part using
20	09	indirect immunofluorescence microscopy with the monoclonal antibodies against host
2 1	10	mitochondria.
2 1	11	Figure 4 shows differential interference contrast microscopy images of <i>P. bursaria</i>
21	12	cells with (Algae+) and without (Algae-) symbiotic algae in the anterior end and
21	13	immunofluorescence images of those cells using mitochondrial monoclonal antibodies.
21	14	Note that mitochondria are present in the anterior end without symbiotic algae as well
21	15	as in the anterior end with symbiotic algae. This observation shows that not all areas
2 1	16	with mitochondria had algae, but there was a localization bias within the host cell.
2	17	
21	18	Discussion

:	219	Localization of endosymbionts near the host cell cortex is a universal phenomenon; the
:	220	same phenomenon has been observed in other ciliate -algae or -cyanobacteria
:	221	endosymbionts, such as Mayorella viridis, Coleps hirtus, Coleps spetai, Frontonia
:	222	leucas, Malacophrys sphagni, Ophrydium versatile, Vorticella sp., Climacostomum
:	223	virens, Euplotes daidaleos, Halteria bifurcata, Stentor polymorphus, and Stentor niger
	224	(Reisser 1986). Furthermore, the ability to adjust the intracellular symbiont position is
	225	likely an important means of optimizing carbon production (Petrou et al. 2017).
:	226	A previous study showed that the infectivity of Chlorella species in P. bursaria is
:	227	based on their ability to localize beneath the host cell membrane after escaping from the
	228	host digestive vacuole during the early infection process (Kodama and Fujishima 2007).
	229	Furthermore, this algal attachment may be related to the avoidance of host lysosomal
:	230	digestion or fusion because algal digestion when the symbiotic algae are attached
:	231	beneath the host cell cortex has not been observed (Kodama and Fujishima unpubl.
:	232	data).
:	233	Acidosomes are organelles responsible for the acidification of DVs before
:	234	lysosomal fusion and are distributed throughout the cell (Allen 1993; Kodama 2013).
:	235	High-speed centrifugation can also induce the rapid accumulation of host acidosomes
:	236	and lysosomes at the anterior end of Paramecium. Within 10 min of centrifugation, the
:	237	accumulated vesicles recover their original positions by host rapid cytoplasmic
:	238	streaming (Kodama 2013). This observation showed that although acidosomes and
:	239	lysosomes were dislocated by centrifugation, the mitochondria remained unchanged.

FEMS Microbiology Letters

240 This is probably because acidosomes and lysosomes undergo cytoplasmic streaming,241 but mitochondria do not.

Figure 5 shows a schematic representation of the algal attachment mechanism beneath the host cell cortex after dislocation via high-speed centrifugation. After the high-speed centrifugation, almost all trichocysts are released out of the cell. The discharged trichocysts were regenerate from the endoplasmic reticulum, pass through the Golgi apparatus, and undergo a maturation process (pretrichocysts) before mature trichocysts are delivered to the cell membrane (Plattner 2017). Pretrichocysts contain a growing mass of electron dense secretory material. The pretrichocysts then elongate while their luminal space is progressively filled with crystallizing secretory materials (Garreau De Loubresse 1993). Because several hours are required for regeneration after trichocyst discharge (Harumoto 2002), no trichocysts are observed in the cells after algal reattachment. This representation can be defined by obtaining monoclonal antibodies against both mitochondria and trichocysts. To the best of our knowledge, this is the first report showing the distribution of host mitochondria and trichocysts during algal relocalization beneath the host cell cortex. Fast cytoplasmic streaming after high-speed centrifugation of *P. bursaria* is the driving force for algal relocalization. The characteristic feature of rotational cytoplasmic streaming in the genus Paramecium (P. aurelia, P. caudatum, P. bursaria, P. *multimicronucleatum*, and *P. calkinsi*) is that the pattern of its route and direction

remain constant (Sikora 1981). Various factors, such as cell division, conjugation,

temperature, and osmotic pressure, are known to affect cytoplasmic streaming in

Paramecium (Sikora 1981), but the detachment of the symbiotic algae by high-speed centrifugation is also a factor. In P. bursaria-Chlorella endosymbiosis, their cell cycle pace is guaranteed to be synchronous (Takahashi 2016). Takahashi et al. (2007) found that P. bursaria controls the proliferation of endosymbiotic algae through host-cell-cycle-dependent cytoplasmic streaming. Thus, host cytoplasmic streaming plays a major role in maintaining the number and cellular localization of symbiotic algae in P. *bursaria* cells. The mitochondria of the host *P. bursaria* are close to the PV membrane (Fig. 1), and their number and function are altered by the presence or absence of symbiotic algae (Kodama and Fujishima 2022). Therefore, host mitochondria and symbiotic algae are expected to be strongly associated with each other. We assumed that the presence of mitochondria was essential for the existence of symbiotic algae; however, the results in Fig. 4 contradict this expectation. Mitochondria and endoplasmic reticulum (ER) are contact at ER-Mitochondria Contact Sites (EMCS)s. Lipids and Ca²⁺ synthesized in the ER are transported to mitochondria through the EMCSs (Kornmann et al. 2009; Rizzuto et al. 1998). Furthermore, EMCs is also important in reactive oxygen species (ROS) production (Booth et al. 2016) and autophagosome formation (Hamasaki et al. 2013). Song et al. (2017) reported that the host ER is also involved in organizing intracellular algal symbiosis in the cytoplasm. The relationship between host mitochondria and symbiotic algae and the relationship between other cellular organelles, including the host endoplasmic reticulum, should be examined in detail in future studies.

FEMS Microbiology Letters

283	3 The exposure of <i>P. bursaria</i> cells to ultraviolet and photosynthetically active
284	radiation is known to induce symbiotic algal dislocation, moving to the posterior cell
28	region (Summerer <i>et al.</i> 2009). The displaced algae relocate to a "normal" distribution
28	when host cells are transferred to a medium without ultraviolet radiation conditions. The
28	mechanisms of algal displacement and relocation remain unclear (Summerer <i>et al.</i>
288	2009). A dislocation of <i>Chlorella</i> symbionts has also been described in the ciliate
289	<i>Pelagodileptus trachelioides</i> (Butkay 2004). Although this phenomenon appears to be a
290	o stress reaction followed by host cytolysis, the details remain unknown. The method of
29	artificial algal detachment and subsequent rapid reattachment by high-speed
292	2 centrifugation of algae-bearing <i>P. bursaria</i> may contribute to understanding the
293	3 mechanism of symbiotic algal localization in a variety of host species.
294	Although the mechanism of PV localization beneath the host cell cortex is still
29	5 unknown, the docking or distribution mechanism of mitochondria and uninserted
290	5 trichocysts in other ciliate species, such as <i>Paramecium tetraurelia</i> , have been reported.
29	Aufderheide (1977) reported that, in the subcortical regions of <i>P. tetraurelia</i> ,
298	8 mitochondria and uninserted (undocked) trichocysts display saltatory motility with
299	individual characteristics, making them distinguishable from each other and from
300	cellular cyclosis. The saltatory motion of trichocysts is implicated as a means of
30	transporting new trichocysts from the cytoplasm to their ultimate location in the cellular
302	2 cortex. In addition, the saltatory motion may be a factor in the intracellular distribution
303	of the mitochondria. The mechanism of trichocyst docking at the <i>Paramecium</i> cell
304	membrane has been reported in detail (Plattner 2017; Plattner <i>et al.</i> 1982). Before

305	trichocyst docking, mature trichocysts move through the subcortical region by cyclosis
306	(Sikora 1981). Then, they approach, in a saltatory manner, tip first, a docking site at the
307	cell membrane (Aufderheide 1978); Thereby, trichocysts are guided by the same
308	"hand." This entity is a microtubule emanating from a nearby ciliary basal body
309	(Plattner <i>et al.</i> 1982), which always is situated ~ 0.5 to 1 μ m from a docking site proper.
310	Petrou et al. (2017) found that the intracellular algal symbionts within the large
311	photosymbiotic foraminifera Marginopora vertebralis exhibit phototactic behavior and
312	the phototactic movement of the symbionts is accomplished by the host through rapid
313	actin-mediated relocation of the symbionts deeper into the cavities within the calcite
314	skeletons. Thus, the host cytoskeleton plays a major role in the migration of host
315	cytosolic organelles and symbiotic algae. In order to study the involvement of the
316	cytoskeleton in the process of PV localization, the cell cortex of algae-bearing P.
317	bursaria cells was observed in detail by TEM. However, no cytoskeletal structure that
318	seems to be related to PV localization has been found until now (Kodama unpub. Data).
319	Adhesion just below the host cell surface is a universal phenomenon found not
320	only in cell organelles and symbiotic algae but also in pathogenic bacteria. Protists are
321	potential natural hosts of various bacterial species, including pathogens. Paramecium
322	caudatum could be a natural reservoir of Legionella pneumophila (Watanabe et al.
323	2016), and P. bursaria could be a potential host of Francisella novicida (Watanabe et
324	al. 2022). Francisella novicida is a facultative intracellular pathogen and a causative
325	agent of tularemia (Ellis et al. 2002). Recently, Watanabe et al. (2022) found that F.
326	novicida (strain U112) cells, which were wrapped with the host DV membrane,
327	localized beneath the host cell cortex. This indicates that both symbiotic algae and

3 4		
5 6	328	bacteria can attach beneath the host cell cortex. Therefore, elucidation of the mechanism
/ 8 9	329	of localization beneath the host cell cortex using <i>P. bursaria</i> is expected to contribute to
10 11	330	the development of not only symbiotic biology but also infectious disease research.
12 13	331	
14 15 16	332	References
17 18	333	Adoutte A. Exocytosis: Biogenesis, Transport and Secretion of Trichocysts. In: Görtz
19 20 21	334	HD (ed). Paramecium. Springer: Berlin, Heidelberg, 1988, 325-62.
21 22 23	335	
24 25	336	Allen RD. Acidosomes: recipients of multiple sources of membrane and cargo during
26 27	337	development and maturation. <i>J Cell Sci</i> 1993; 106 :411–22.
28 29 30	338	
31 32	339	Alberts D, Wiessner W. Nitrogen nutrition of endosymbiotic Chlorella spec. Endocyt
33 34	340	<i>Cell Res</i> 1985;1:55–64.
35 36 27	341	
37 38 39	342	Albers D, Reisser W, Wiessner W. Studies on the nitrogen supply of endosymbiotic
40 41	343	chlorellae in green Paramecium bursaria. Plant Sci Lett 1982;25:85-90.
42 43	344	
44 45 46	345	Aufderheide KJ. Saltatory motility of uninserted trichocysts and mitochondria in
47 48	346	Paramecium tetraurelia. Science 1977;198:299–300.
49 50	347	
51 52	348	Aufderheide KJ. Motility events of trichocyst insertion in Paramecium tetraurelia. J
55 55	349	<i>Protozool</i> 1978; 25 :362–65.
56 57	350	
59 60		

FEMS Microbiology Letters

4		
5 6	351	Blanc G, Duncan G, Agarkova I et al. The Chlorella variabilis NC64A genome reveals
7 8 0	352	adaptation to photosynthesis, coevolution with viruses, and cryptic sex. The Plant Cell
9 10 11	353	2010; 22 :2943–55.
12 13	354	
14 15	355	Booth DM, Enyedi B, Geiszt M et al. Redox Nanodomains Are Induced by and Control
16 17 18	356	Calcium Signaling at the ER-Mitochondrial Interface. Mol Cell 2016;63:240-48.
19 20	357	
21 22	358	Brown JA, Nielsen PJ. Transfer of photosynthetically produced carbohydrate from
23 24 25	359	endosymbiotic Chlorellae to Paramecium bursaria. J Protozool 1974;21:569-70.
23 26 27	360	
28 29	361	Butkay M. Beobachtungen an Pelagodileptus trachelioides (Ciliophora). Lauterbornia
30 31	362	2004; 49 :129–40.
32 33 34	363	
35 36	364	Cheng YH, Liu CFJ, Yu YH et al. Genome plasticity in Paramecium bursaria revealed
37 38	365	by population genomics. BMC Biology 2020;18:180.
39 40 41	366	
42 43	367	Dryl S. Antigensic transformation in <i>Paramecium aurelia</i> after homologous antiserum
44 45	368	treatment during autogamy and conjugation. J Protozool 1959;6:25.
46 47 48	369	
49 50	370	Ellis J, Oyston PC, Green M et al. Tularemia. Clin Microbiol Rev 2002;15:631-46.
51 52	371	
53 54 55	372	Fujishima M, Kodama Y. Endosymbionts in Paramecium. Europ J Protistol
56 57	373	2012; 48 :124–37.
58 59 60	374	

1	
2	
2	
ر ۸	
4 7	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
20	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
11	
יד ⊿ר	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
22	
4 רר	
55	
56	
57	
58	
59	

375	Garreau De Loubresse N. Early steps of the secretory pathway in Paramecium:
376	ultrastructural, immunocytochemical, and genetic analysis of trichocyst biogenesis. In:
377	Plattner H (ed). Membrane Traffic in Protozoa, JAI Press, Greenwich (CT, USA),
378	London (GB), 1993, 27–59.
379	
380	Gortz HD. Infections of Paramecium bursaria with bacteria and yeasts. J Cell Sci 1982;
381	58 :445–53.
382	
383	Gu FK, Chen L, Ni B, Zhang X. A comparative study on the electron microscopic
384	enzymo-cytochemistry of Paramecium bursaria from light and dark cultures. Eur J
385	Protistol 2002; 38 :267–78.
386	
387	Hamasaki M, Furuta N, Matsuda A et al. Autophagosomes form at ER-mitochondria
388	contact sites. <i>Nature</i> 2013; 495 :389–93.
389	
390	Harumoto T. Defensive function of trichocysts in Paramecium. Jpn J Protozool
391	2002; 35 :125–33.
392	
393	Karakashian SJ, Rudzinska MA. Inhibition of lysosomal fusion with symbiont-
394	containing vacuoles in Paramecium bursaria. Exp Cell Res 1981;131:387-93.
395	
396	Kodama Y. Localization of attachment area of the symbiotic Chlorella variabilis of the
397	ciliate Paramecium bursaria during the algal removal and reinfection. Symbiosis
398	2013; 60 :25–36.

FEMS Microbiology Letters

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20 21	
∠ I วว	
∠∠ ??	
23 74	
24	
25	
20	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42 42	
43	
44 45	
45 46	
40 47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

399	Kodama Y, Fujishima M. Infectivity of Chlorella species for the ciliate Paramecium
400	bursaria is not based on sugar residues of their cell wall components, but on their
401	ability to localize beneath the host cell membrane after escaping from the host digestive
402	vacuole in the early infection process. Protoplasma 2007;231:55-63.
403	
404	Kodama Y, Fujishima M. Localization of perialgal vacuoles beneath the host cell
405	surface is not a prerequisite phenomenon for protection from the host's lysosomal fusion
406	in the ciliate Paramecium bursaria. Protist 2009;160:319–29.
407	
408	Kodama Y, Fujishima M. Secondary symbiosis between Paramecium and Chlorella
409	cells. Int Rev Cell Mol Biol 2010;279:33–77.
410	
411	Kodama Y, Fujishima M. Endosymbiosis of Chlorella species to the ciliate
412	Paramecium bursaria alters the distribution of the host's trichocysts beneath the host
413	cell cortex. <i>Protoplasma</i> 2011; 248 :325–37.
414	
415	Kodama Y, Fujishima M. Synchronous induction of detachment and reattachment of
416	symbiotic Chlorella spp. from the cell cortex of the host Paramecium bursaria. Protist
417	2013; 164 :660–72.
418	
419	Kodama Y, Fujishima M. Endosymbiotic Chlorella variabilis reduces mitochondrial
420	number in the ciliate Paramecium bursaria. Sci Rep 2022;12:8216.
421	

2 3		
4 5 6	422	Kodama Y, Inouye I, Fujishima M. Symbiotic Chlorella vulgaris of the ciliate
7 8	423	Paramecium bursaria plays an important role in maintaining perialgal vacuole
9 10 11	424	membrane functions. Protist 2011;162:288–303.
12 13	425	
14 15 16	426	Kornmann B, Currie E, Collins SR et al. An ER-mitochondria tethering complex
17 18	427	revealed by a synthetic biology screen. Science 2009;325:477-81.
19 20	428	
21 22 23	429	Petrou K, Ralph PJ, Nielsen DA. A novel mechanism for host-mediated photoprotection
24 25	430	in endosymbiotic foraminifera. <i>ISME J</i> 2017; 11 :453–62.
26 27	431	
28 29 30	432	Plattner H. Trichocysts- <i>Paramecium</i> 's Projectile-like Secretory Organelles: Reappraisal
31 32	433	of their Biogenesis, Composition, Intracellular Transport, and Possible Functions. J
33 34	434	Eukaryot Microbiol 2017; 64 :106–33.
35 36 37	435	
38 39	436	Plattner H, Westphal C, Tiggemann R. Cytoskeleton secretory vesicle interactions
40 41	437	during the docking of secretory vesicles at the cell membrane in Paramecium
42 43 44	438	<i>tetraurelia</i> cells. <i>J Cell Biol</i> 1982; 92 :368–77.
45 46	439	
47 48	440	Reisser W. Endosymbiotic associations of freshwater protozoa and algae. In: Corliss
49 50 51	441	JO, Patterson DJ (eds). Progress in Protistology, Biopress Ltd, Bristol, 1986, 195–214.
52 53	442	
54 55	443	Rizzuto R, Pinton P, Carrington W <i>et al.</i> Close contacts with the endoplasmic reticulum
56 57 58	444	as determinants of mitochondrial Ca ²⁺ responses. <i>Science</i> 1998; 280 :1763–66.
59 60	445	

4		
5 6	446	Sikora J. Cytoplasmic streaming in <i>Paramecium</i> . Protoplasma 1981;109:57-77.
7 8 0	447	
9 10 11	448	Song C, Murata K, Suzaki T. Intracellular symbiosis of algae with possible involvement
12 13	449	of mitochondrial dynamics. Sci Rep 2017;7:1221.
14 15	450	
16 17 18	451	Summerer M, Sonntag B, Hörtnagl P et al. Symbiotic ciliates receive protection against
19 20	452	UV damage from their algae: A test with Paramecium bursaria and Chlorella. Protist
21 22	453	2009;160:233–43.
23 24 25	454	
25 26 27	455	Takahashi T. Simultaneous Evaluation of Life Cycle Dynamics between a Host
28 29	456	Paramecium and the Endosymbionts of Paramecium bursaria Using Capillary Flow
30 31	457	Cytometry. <i>Sci Rep</i> 2016; 6 :31638.
32 33 34	458	
35 36	459	Takahashi T, Shirai Y, Kosaka T et al. Arrest of Cytoplasmic Streaming Induces Algal
37 38	460	Proliferation in Green Paramecia. PLoS ONE 2007;12:e1352.
39 40 41	461	
42 43	462	Tsukii Y, Harumoto T, Yazaki K. Evidence for a viral macro-nuclear endosymbiont in
44 45	463	Paramecium caudatum. J Euk Microbiol 1995;42:109–15.
46 47 48	464	
49 50	465	Reisser W. The metabolic interactions between Paramecium bursaria Ehrbg. and
51 52	466	Chlorella spec. in the Paramecium bursaria-symbiosis. II. Symbiosis-specific
53 54 55	467	properties of the physiology and the cytology of the symbiotic unit and their regulation
56 57	468	(author's transl). Arch Microbiol 1976;111:161–70.
58 59 60	469	

1		
2 3		
4		
5 6 7	470	Reisser W. The metabolic interactions between Paramecium bursaria Ehrbg. and
, 8 9	471	Chlorella spec. in the Paramecium bursaria-symbiosis. III. The influence of different
10 11	472	CO ₂ -concentrations and of glucose on the photosynthetic and respiratory of the
12 13	473	symbiotic unit. Arch Microbiol 1980;125:291–93.
14 15	474	
16 17	475	Reisser W. Endosymbiotic associations of freshwater protozoa and algae. Prog Protistol
19 20	476	1986;1:195–214.
21 22	477	
23 24	478	Reynolds ES. The use of lead citrate at high pH as an electron-opaque stain in electron
25 26 27	479	microscopy. J Cell Biol 1963;17:208-12.
28 29	480	
30 31	481	Spurr AR. A low viscosity epoxy resin embedding medium for electron microscopy. J
32 33 24	482	<i>Ultrastruct Res</i> 1969; 26 :31–43.
34 35 36	483	
37 38	484	Watanabe K, Nakao R, Fujishima M et al. Ciliate Paramecium is a natural reservoir of
39 40	485	Legionella pneumophila. Sci Rep 2016;6:24322.
41 42 43	486	
44 45	487	Watanabe K, Motonaga A, Tachibana M et al. Francisella novicida can
46 47	488	utilize Paramecium bursaria as its potential host. Envl Microbiol Rep 2022;14:50-9.
48 49 50		
51		
52		
53 54		
55		
56		
57		
50 59		
60		

Figure Legends

Figure 1. (**A**) Transmission electron microscopy of the symbiotic algae and the surrounding trichocyst and mitochondria. The magnified image of the mitochondria is shown in (**B**). Note that mitochondrion is attached to a PV membrane (PVm, arrowhead). tc, trichocyst; tcm, trichocyst membrane; mt, mitochondrion; bb, basal body; PVm, PV membrane; a, symbiotic algae.

Figure 2. (A) Indirect immunofluorescence micrographs of the high-speed centrifuged algaebearing Paramecia with the monoclonal antibody against trichocysts. Before centrifugation, the symbiotic algae localized throughout the host cell were observed by differential interference contrast (DIC) microscopy. Immunofluorescence (IM) is observed in the whole cell. Immediately after the centrifugation, the symbiotic algae were dislocated and concentrated at the posterioranterior sideside. Ten min after the centrifugation, the dislocated algae distributed throughout the cell by host cytoplasmic streaming. Thirty min after the centrifugation, algal relocalization was completed. IM is hardly observed in the centrifuged cell because of discharge of trichocysts induced by the high-speed centrifugation as shown in (B). Immunofluorescence is still not observed even though the algal re-localized. Ma, macronucleus. (B) DIC and IM micrographs of discharged trichocysts from a certain *P. bursaria* cell. The trichocyst is completely free from the P. bursaria. Trichocysts are colorless and transparent, making them difficult to observe by the DIC microscopy, but easy to observe by the IM. (C) Immunofluorescence intensity of the centrifuged cells decreased drastically, and did not increase. Twelve to 20 Paramecium cells were observed. Error bars show standard deviation (SD). Asterisks indicate significant differences (Mann-Whitney U test, ***P < 0.001, Twelve to 20 Paramecium cells were observed).

Figure 3. (A) Indirect immunofluorescence micrographs of the high-speed centrifuged algaebearing *Paramecia* with the monoclonal antibody against mitochondria. <u>Photographs were taken</u> by focusing on mitochondria showing strong immunofluorescence during each observation period. Before the centrifugation, the symbiotic algae were observed throughout the host cell were observed by differential interference contrast (DIC) microscopy. Immunofluorescence (IM) is also observed in the whole cell. Immediately after the centrifugation, the symbiotic algae were dislocated and concentrated at the posterior side. IM is still observed in the whole cell. Algal

FEMS Microbiology Letters

reattachment was complete within 30 minutes and no change in mitochondrial fluorescence was observed. Immediately after the high-speed centrifugation, the symbiotic algae localized to the posterior side. Thus, only the posterior side of the *Paramecia* becomes thicker and stiffer due to the presence of many algae, making it really difficult to focus on the posterior side. Therefore, the focus of the immediate after is different from that of the other three (Before, 10 min, and 30 min) periods. Ma, macronucleus. **(B)** Immunofluorescence intensity of the centrifuged cells did not change before and after the centrifugation, and there was no significant differences (Mann-Whitney U test, Ten to 12 *Paramecium* cells were observed) were observed. Ten to 12 *Paramecium* cells were observed. Error bars show standard deviation (SD).

Figure 4. Indirect immunofluorescence micrographs with the monoclonal antibody against mitochondria. *Paramecium bursaria* cells with (Algae+) and without (Algae-) symbiotic algae on their anterior were observed by differential interference contrast (DIC) microscopy. Immunofluorescence (IM) indicates that host mitochondria is present in areas with and without symbiotic algae.

Figure 5. A schematic diagram of changes in localization of symbiotic algae with PV membrane, host mitochondria, and trichocysts before and after high-speed centrifugation. Before the centrifugation, numerous host mitochondria and trichocysts are attached beneath the host cell cortex, with symbiotic algae settled between them. After the centrifugation, the symbiotic algae detach from the host cell cortex, immediately accumulating at the posterior end of the host cell. At the same time, almost all trichocysts are released out of the cell, but mitochondria remain anchored. The symbiotic algae gradually reattach by host cytoplasmic streaming, which is complete within 30 min. At that time, the algae attach between mitochondria, but trichocysts are not required for the algal attachment.

Figure 1. (A) Transmission electron microscopy of the symbiotic algae and the surrounding trichocyst and mitochondria. The magnified image of the mitochondria is shown in **(B)**. Note that mitochondrion is attached to a PV membrane (PVm, arrowhead). tc, trichocyst; tcm, trichocyst membrane; mt, mitochondrion; bb, basal body; PVm, PV membrane; a, symbiotic algae.

Figure 2. (A) Indirect immunofluorescence micrographs of the high-speed centrifuged algaebearing *Paramecia* with the monoclonal antibody against trichocysts. Before centrifugation, the symbiotic algae localized throughout the host cell were observed by differential interference contrast (DIC) microscopy. Immunofluorescence (IM) is observed in the whole cell. Immediately after the centrifugation, the symbiotic algae were dislocated and concentrated at the

anterior-posterior side. Ten min after the centrifugation, the dislocated algae distributed throughout the cell by host cytoplasmic streaming. Thirty min after the centrifugation, algal relocalization was completed. IM is hardly observed in the centrifuged cell because of discharge of trichocysts induced by the high-speed centrifugation (**B**). Immunofluorescence is still not observed even though the algal re-localized. Ma, macronucleus. (**C**) Immunofluorescence intensity of the centrifuged cells decreased drastically, and did not increase. Twelve to 20 *Parameeium* cells were observed. Error bars show standard deviation (SD). Asterisks indicate significant differences (Mann-Whitney U test, ***P < 0.001, Twelve to 20 *Parameeium* cells were observed).

ScholarOne Support 1-434/964-4100

Figure 3. (A) Indirect immunofluorescence micrographs of the high-speed centrifuged algae-bearing *Paramecia* with the monoclonal antibody against mitochondria. Photographs were taken by focusing on mitochondria showing strong immunofluorescence during each observation period. Before the centrifugation, the symbiotic algae were observed throughout the host cell were observed by differential interference contrast (DIC) microscopy. Immunofluorescence (IM) is also observed in the whole cell. Immediately after the high-speed centrifugation, the symbiotic algae localized to

the posterior side. Thus, only the posterior side of the *Paramecia* becomes thicker and stiffer due to the presence of many algae, making it really difficult to focus on the posterior side. Therefore, the focus of the immediate after is different from that of the other three (Before, 10 min, and 30 min) periods. Ma, macronucleus. **(B)** Immunofluorescence intensity of the centrifuged cells did not change before and after the centrifugation, and no significant differences (Mann-Whitney U test, ten to 12 *Paramecium* cells were observed) were observed. Error bars show standard deviation (SD).

Figure 4. Indirect immunofluorescence micrographs with the monoclonal antibody against mitochondria. *Paramecium bursaria* cells with (Algae+) and without (Algae-) symbiotic algae on their anterior were observed by differential interference contrast (DIC) microscopy. Immunofluorescence (IM) indicates that host mitochondria is present in areas with and without symbiotic algae.

Figure 5. A schematic diagram of changes in localization of symbiotic algae with PV membrane, host mitochondria, and trichocysts before and after high-speed centrifugation. Before the centrifugation, numerous host mitochondria and trichocysts are attached beneath the host cell cortex, with symbiotic algae settled between them. After the centrifugation, the symbiotic algae detach from the host cell cortex, immediately accumulating at the posterior end of the host cell. At the same time, almost all trichocysts are released out of the cell, but mitochondria remain anchored. The symbiotic algae gradually reattach by host cytoplasmic streaming, which is complete within 30 min. At that time, the algae attach between mitochondria, but trichocysts are not required for the algal attachment.

Role of host ciliate <i>Paramecium bursaria</i> mitochondria and trichocysts for symbiotic <i>Chlorella variabilis</i> attachment beneath the host cell cortex
symbiotic Chlorella variabilis attachment beneath the host cell cortex
Mitochondria and trichocysts of the ciliate Paramecium bursaria
One sentence summary: Although the host mitochondria of ciliate Paramecium
bursaria are near symbiotic algae during reattachment, this does not mean that the algae
can exist if mitochondria are present, indicating some localization bias within the host
cell.
Abstract
Symbiotic Chlorella variabilis is encased in the perialgal vacuole (PV) membrane of
ciliate Paramecium bursaria. The PV membrane is stably anchored below the host cell
cortex by adhesion to host mitochondria. Host trichocysts, which are defensive
organelles against predators, are present in the mitochondria and PV membrane vicinity.
The mechanism by which PV attaches beneath the host cell cortex remains unknown.
When <i>P. bursaria</i> is centrifuged at high speed, the symbiotic algae are displaced from
the host cell cortex and concentrate at the posterior end. When centrifugation is stopped,
the dislocated algae reattach beneath the host cell cortex with fast cytoplasmic
streaming. The densities of mitochondria and trichocysts before and after centrifugation
were compared using indirect immunofluorescence microscopy with monoclonal

2	
3	
Δ	
-	
5	
6	
7	
8	
0	
9	
10	
11	
12	
12	
15	
14	
15	
16	
17	
10	
18	
19	
20	
21	
22	
22	
23	
24	
25	
26	
20	
27	
28	
29	
30	
20	
31	
32	
33	
34	
25	
22	
36	
37	
38	
20	
10	
40	
41	
42	
43	
ΔΛ	
44	
45	
46	
47	
48	
40	
49	
50	
51	
52	
52	
55	
54	
55	
56	
57	
57	
58	
50	

1

23 dislocated algae could reattach even in the absence of trichocysts. In contrast, host 24 mitochondria were unaffected in localization and number, and the dislocated algae also 25 reattached. These findings suggest trichocysts are unnecessary for algal re-localization 26 and that mitochondria are colocalized with the algae, unlike mitochondria. However, 27 many mitochondria were also present in the cell's anterior region without symbiotic 28 algae. Therefore, not all areas with mitochondria contained algae, but there was a 29 localization bias within the host cell. 30 31 Keywords: Algal reattachment, Chlorella variabilis, Endosymbiosis, Mitochondria, Paramecium bursaria, Trichocyst 32 33 34 Introduction Paramecium bursaria, a freshwater ciliate, is a symbiotic organism that establishes 35 36 endosymbiotic relationships with *Chlorella* spp. Each symbiotic alga is enclosed in a 37 perialgal vacuole (PV) derived from the host digestive vacuole (DV), which protects the

alga from lysosomal fusion (Gu *et al.* 2002; Karakashian and Rudzinska 1981). This

relationship between ciliates and algae is mutualistic; the host cell supplies algae with

40 nitrogen and oxygen (Albers *et al.* 1982, 1985; Reisser 1976, 1980), whereas the algae

41 provide the host with photosynthetic products (Brown *et al.* 1974; Reisser 1986) and

42 CO₂ (Reisser 1980). However, both *P. bursaria* and symbiotic algae can live without

43 their partners. The re-establishment of endosymbiosis between algae-free (removed) *P*.

44 *bursaria* cells and symbiotic *Chlorella* cells isolated from algae-bearing hosts can be
45	induced (Kodama and Fujishima 2010). In addition to their original symbiotic algae,
46	algae-free P. bursaria cells can be reinfected with bacteria and yeast that are retained in
47	the cytoplasm (Görtz 1982; Watanabe et al. 2022). The nuclear genomes of the
48	symbiotic Chlorella variabilis (Blanc et al. 2010) and the host P. bursaria have been
49	explored (Cheng et al. 2020); these organisms are now considered models for
50	endosymbiosis research.
51	Using pulse-labeling and chasing of algae-free paramecia for 1.5 min with
52	symbiotic algae that were isolated from algae-bearing <i>P. bursaria</i> , four important
53	cytological events have been identified. These events are necessary for the
54	establishment of endosymbiosis and the timing of each mechanism during the infection
55	process (Kodama and Fujishima 2010). 1) Within 3 min of algal mixing, part of the
56	algae has resistance to the host's lysosomal digestive enzymes in the DVs. 2) Within 30
57	min of mixing, algae in the DV begin budding from the DV membrane into the
58	cytoplasm. 3) Within 15 min of budding from the DV, the DV membrane enclosing a
59	single green Chlorella differentiates into a PV membrane. 4) The PV membrane
60	translocates beneath the host cell cortex.
61	The PV appears to localize near the host mitochondria and trichocysts. In previous
62	studies, monoclonal antibodies against P. bursaria trichocysts and mitochondria were
63	obtained; both mitochondrial and trichocyst densities of algae-bearing P. bursaria were
64	significantly lower than those of algae-free cells (Kodama and Fujishima 2011, 2022).
65	These results indicate that symbiotic algae compete for their attachment sites with

66 preexisting trichocysts and mitochondria, and algae have the ability to ensure algal

67	attachment sites beneath the host cell cortex (Kodama and Fujishima 2011).
68	Furthermore, high-speed centrifugation can induce rapid algal detachment from the host
69	cell cortex and concentrates the algae in the posterior end of the host cell (Kodama and
70	Fujishima 2013). Within 10 min of centrifugation, the detached algae recover their
71	original positions by host rapid cytoplasmic streaming. This algal reattachment was
72	inhibited when host cytoplasmic streaming was arrested by nocodazole. In nocodazole-
73	treated cells, approximately 5 h was required for complete algal recovery, and the host
74	cytoplasmic streaming had been resumed at that time. These results demonstrated that
75	adhesion of the PV beneath the host cell cortex can be repeatedly induced and that host
76	cytoplasmic streaming facilitates the recovery of algal attachment. However, the
77	mechanism by which the PV attaches beneath the host cell cortex remains unknown. In
78	this study, to investigate the mechanisms of symbiotic algal adhesion, the distribution of
79	mitochondria and trichocysts during reattachment was examined by
80	immunofluorescence microscopy using monoclonal antibodies against the mitochondria
81	and trichocysts. Furthermore, mitochondria of the anterior part of the host without
82	symbiotic algae were also observed.
83	
84	Materials and methods
85	Organism cultivation
86	Paramecium bursaria strain Yad1g1N cells (syngen B1 or R3, mating type I) harboring
87	the symbiotic Chlorella variabilis strain 1N were used (Kodama and Fujishima 2009,
88	2011). Paramecium cells were cultivated in red pea (Pisum sativum) extract culture

89	medium (Tsukii et al. 1995) with a modified Dryl's solution (Dryl 1959;) (KH ₂ PO ₄
90	was used instead of NaH ₂ PO ₄ ·2H ₂ O) and inoculated with <i>Klebsiella aerogenes</i> (ATCC
91	35028) one day before use. The cultures were in the early stationary phase of growth
92	one day after the final feeding. All cells used in this study were in this phase.
93	Cultivation was performed in test tubes (18 mm \times 180 mm) at 25 ± 1°C under
94	fluorescent lighting at 20–30 µmol photons m ⁻² s ⁻¹ using an incandescent lamp.
95	
96	Transmission electron microscopy (TEM)
97	Algae-bearing <i>P. bursaria</i> were pre-fixed with 2% glutaraldehyde and prepared for
98	TEM, as described previously (Kodama et al. 2011). The paramecia embedded in
99	Spurr's resin (1969) were sectioned (70 nm thickness) using an ultramicrotome
100	(Reichert Ultracut S; Leica Microsystems, Vienna, Austria) with a diamond knife,
101	mounted on nickel mesh grids, and stained with lead citrate (Reynolds 1963). The
102	sections were observed using TEM (CM120; Philips) at 80 kV.
103	
104	High-speed centrifugation of <i>P. bursaria</i> cells
105	Algae-bearing P. bursaria cells were centrifuged at high speed (Kodama and Fujishima
106	2011). <i>P. bursaria</i> cells at a density of 5×10^3 cells/mL were placed in a 1.5 mL
107	microcentrifuge tube. The tube was then centrifuged using a fixed-angle rotor at 1000 \times
108	g for 1 min at $25 \pm 1^{\circ}$ C (Model 3740; Kubota Corporation, Tokyo, Japan). Before,
109	immediately after (approx. 3 min), 10 min, and 30 min after the centrifugation, aliquots
110	of <i>Paramecium</i> cells were air-dried on cover glasses (4.5 mm \times 24 mm) and fixed with

FEMS Microbiology Letters

Page 38 of 80

4% (w/v) paraformaldehyde dissolved in phosphate-buffered saline (PBS) (137 mM NaCl, 2.68 mM KCl, 8.1 mM NaHPO₄·12H₂O, 1.47 mM KH₂PO₄, pH 7.2) for 10 min at 4°C. Indirect immunofluorescence microscopy The cover glasses with the fixed *P. bursaria* cells were washed with PBS containing 0.05% (v/v) Tween 20 (PBST) for 10 min at 4°C. The cells on the cover glasses were treated with a culture supernatant of hybridoma cells containing either monoclonal antibodies mAb5A11E2 against trichocysts of *P. bursaria* (Kodama and Fujishima 2011) or mAb2B8A8H1 against mitochondria of *P. bursaria* (Kodama and Fujishima 2022) overnight at 4°C, washed with PBS, and treated with Alexa Fluor 488 conjugated goat anti-mouse IgG (Molecular Probes Inc., Eugene, OR, USA) diluted 1000-fold with PBS for 2 h at 25°C. The cover glasses were then washed with PBS and observed under a differential interference contrast microscope and fluorescence microscope (BX53; Olympus Corp., Tokyo, Japan). Images were acquired using an Olympus DP74 system and analyzed using Olympus cellSens Dimension software. Statistical analysis Data were analyzed using the Mann-Whitney U-test in R. Reproducibility of the data was confirmed by three independent experiments.

132 Results

1	
2	
3	
<u>л</u>	
5	
5	
6	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10	
10 10	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
20	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
12	
+∠ ∕\?	
45	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55	
54	
22	
56	
57	
58	
59	

133	Transmission electron microscopy (TEM) of algae-bearing <i>P. bursaria</i>
134	Algae-bearing paramecia were observed using TEM (Fig. 1). As shown by the
135	arrowhead in Fig. 1, we observed mitochondria that attach to the PVs, as shown in
136	previous studies (Fujishima and Kodama 2012; Song et al. 2017). In contrast, the
137	trichosyst membrane did not attach to the PV membrane (black arrow in Fig. 1).
138	
139	Effects of high-speed centrifugation on distribution of trichocysts in
140	algae-bearing <i>P. bursaria</i> cells
141	Figure 2A shows the results obtained by indirect immunofluorescence microscopy after
142	high-speed centrifugation of algae-bearing P. bursaria cells using monoclonal
143	antibodies against trichocysts. Before centrifugation, symbiotic algae were shown
144	distributed throughout the host cell by differential interference contrast microscopy, and
145	immunofluorescence showed that the trichocysts of the algae-bearing cells were
146	localized as a ring surrounding the algae, as shown in a previous study (Kodama and
147	Fujishima 2011). Immediately after centrifugation, the symbiotic algae dislocated and
148	accumulated in the posterior region of Paramecium. As for trichocysts,
149	immunofluorescence was hardly observed in the centrifuged cells. When cells are
150	stimulated, trichocysts discharge their contents in milliseconds (Adoutte 1988).
151	Therefore, most trichocysts are discharged via high-speed centrifugation. In fact, we
152	observed many discharged trichocysts around the Parameciucm cells (Fig. 2B). The
153	monoclonal antibodies also distinguished after discharge, coinciding with findings in a

154	previous study (Kodama and Fujishima 2011) (Fig. 2B, IM). Ten minutes after
155	centrifugation, the algae completely localized beneath the host cortex, and few
156	trichocysts were observed by immunofluorescence microscopy. Thirty minutes after
157	centrifugation, trichocysts were barely observed. In fact, it was previously reported that
158	when the trichocysts are removed by treatment with lysozyme, regeneration of the
159	mature trichocysts begins at 3 h, even in the presence of lysozyme (Kodama and
160	Fujishima 2009). Therefore, it seems that 30 min areis not sufficient for the recovery of
161	trichocysts. These results clearly support previous studies (Kodama and Fujishima
162	2009) that the symbiotic algae do not need trichocysts to attach beneath the host cell
163	cortex.
164	Figure 2C shows the immunofluorescence intensity of <i>P. bursaria</i> cells before (x-
165	bar, T-B), immediately after (x-bar, T-Ia), 10 min (x-bar, T-10 min), and 30 min (x-bar,
166	T-30 min) after centrifugation. The immunofluorescence intensity of the centrifuged
167	cells decreased drastically and did not increase until 30 min after centrifugation. These
168	quantitative data correspond well with the images shown in Fig. 2A. These quantitative-
169	data correspond well with the results of indirect immunofluorescence microscopy, as-
170	shown in Fig. 2A.
171	
172	
173	Effects of high-speed centrifugation on distribution of mitochondria in
174	algae-bearing <i>P. bursaria</i> cells

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
20	
28	
29	
30	
31	
32	
33	
34	
35	
36	
3/ 20	
20	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50 51	
51 57	
52 52	
54	
55	
56	
57	
58	
59	
60	

175	We examined the effect of high-speed centrifugation on host mitochondria by
176	immunofluorescence microscopy using the same method described above (Fig. 3).
177	Before centrifugation, immunofluorescence of mitochondria was observed around the
178	symbiotic algae. Immediately after centrifugation (approximately 3 min), the symbiotic
179	algae were dislocated, as shown above. Immunofluorescence was observed throughout
180	the cytoplasm. Note that the cortical mitochondrial immunofluorescence became strong
181	after centrifugation. This phenomenon may be due to better accessibility for
182	visualization of the labeling after detachment of the PV from the cortex. Ten and 30 min
183	after centrifugation, symbiotic algae were distributed throughout the cell because of
184	algal relocation. Immunofluorescence of mitochondria was also observed around the
185	symbiotic algae. These observations suggest that symbiotic algae do not need
186	trichocysts for their attachment but are colocalized with mitochondria for their
187	attachment, as shown by TEM observations (Fig. 1).
188	Figure 3B shows the immunofluorescence intensity of algae-free P. bursaria cells
189	before (x-bar, M-B), immediately after (x-bar, M-Ia), 10 min (x-bar, M-10 min), and 30
190	min (x-bar, M-30 min) after centrifugation. There was almost no change in
191	immunofluorescence intensity, and no significant difference was observed between the
192	data for each time point. These quantitative data correspond well with the images shown
193	in Fig. 3A This quantitative data corresponds well with the results of indirect-
194	immunofluorescence microscopy, as shown in Fig. 3A.
195	
196	Mitochondrial distribution of host anterior cortex

Kodama (2013) investigated the symbiotic algal distribution of 14 strains of P. bursaria. As a result, all strains had symbiotic algae at the ventral, dorsal, and posterior cortexices, and some cells did not have symbiotic algae at the anterior cortex. This phenomenon is not strain-, syngen-, or mating-type specific. Only 35% of the strain Yad1g1N cells, also used in this experiment, had symbiotic algae at their anterior cortex. This paper also reported that the artificial trichocyst-discharge experiments by the treatment of lysozyme clarified that trichocysts of the anterior cortex are difficult to remove. Although the high-speed centrifugation experiment clearly showed that trichocysts are unnecessary for algal reattachment, trichocyst-discharge difficulty of the anterior cortex may be related to the restrict enrichment of the large PVs. It is unclear-why algae have difficulty adhering to the anterior cortex of their hosts. The high-speed centrifugation experiment clearly showed that trichocysts are unnecessary for algal-reattachment. On the other hand, host mitochondria remained unchanged in localization by high-speed centrifugation. This indicated that the presence of mitochondria might may be essential related for algal adhesion. To determine whether the reason for the algal difficulty in adhering to the host anterior cortex is due to the low mitochondrial density in this area, we examined whether there were differences in the number and distribution of mitochondria between cells with and without symbiotic algae in their anterior part using indirect immunofluorescence microscopy with the monoclonal antibodies against host mitochondria.

218	Figure 4 shows differential interference contrast microscopy images of P. bursaria
219	cells with (Algae+) and without (Algae-) symbiotic algae in the anterior end and
220	immunofluorescence images of those cells using mitochondrial monoclonal antibodies.
221	Note that mitochondria are present in the anterior end without symbiotic algae as well
222	as in the anterior end with symbiotic algae. This observation shows that not all areas
223	with mitochondria had algae, but there was a localization bias within the host cell.
224	
225	Discussion
226	Localization of endosymbionts near the host cell cortex is a universal phenomenon; the
227	same phenomenon has been observed in other ciliate -algae or -cyanobacteria
228	endosymbionts, such as Mayorella viridis, Coleps hirtus, Coleps spetai, Frontonia
229	leucas, Malacophrys sphagni, Ophrydium versatile, Vorticella sp., Climacostomum
230	virens, Euplotes daidaleos, Halteria bifurcata, Stentor polymorphus, and Stentor niger
231	(Reisser 1986). Furthermore, the ability to adjust the intracellular symbiont position is
232	likely an important means of optimizing carbon production (Petrou et al. 2017).
233	A previous study showed that the infectivity of Chlorella species in P. bursaria is
234	based on their ability to localize beneath the host cell membrane after escaping from the
235	host digestive vacuole during the early infection process (Kodama and Fujishima 2007)
236	Furthermore, this algal attachment may be related to the avoidance of host lysosomal
237	digestion or fusion because algal digestion when the symbiotic algae are attached
238	beneath the host cell cortex has not been observed (Kodama and Fujishima unpubl.

⁹ 239

data).

FEMS Microbiology Letters

Page 44 of 80

3		
4 5		
6 7	240	Acidosomes are organelles responsible for the acidification of DVs before
8 9 10	241	lysosomal fusion and are distributed throughout the cell (Allen 1993; Kodama 2013).
10 11 12	242	High-speed centrifugation can also induce the rapid accumulation of host acidosomes
13 14	243	and lysosomes at the anterior end of Paramecium. Within 10 min of centrifugation, the
15 16 17	244	accumulated vesicles recover their original positions by host rapid cytoplasmic
18 19	245	streaming (Kodama 2013). This observation showed that although acidosomes and
20 21 22	246	lysosomes were dislocated by centrifugation, the mitochondria remained unchanged.
23 24	247	This is probably because acidosomes and lysosomes undergo cytoplasmic streaming,
25 26 27	248	but mitochondria do not.
28 29	249	Figure 5 shows a schematic representation of the algal attachment mechanism
30 31 32	250	beneath the host cell cortex after dislocation via high-speed centrifugation. After the
33 34	251	high-speed centrifugation, almost all trichocysts are released out of the cell. The
35 36	252	discharged trichocysts were regenerate from the endoplasmic reticulum, pass through
37 38 39	253	the Golgi apparatus, and undergo a maturation process (pretrichocysts) before mature
40 41	254	trichocysts are delivered to the cell membrane (Plattner 2017). Pretrichocysts contain a
42 43 44	255	growing mass of electron dense secretory material. The pretrichocysts then elongate
45 46	256	while their luminal space is progressively filled with crystallizing secretory materials
47 48 49	257	(Garreau De Loubresse 1993). Because several hours are required for regeneration after
50 51	258	trichocyst discharge (Harumoto 2002) no trichocysts are observed in the cells after
52 53	259	algal reattachment. This representation can be defined by obtaining monoclonal
54 55		<u>angui reactionnent.</u> This representation can be defined by obtaining monocional
56 57	260	antibodies against both mitochondria and trichocysts. To the best of our knowledge, this
58 59		
00		

FEMS Microbiology Letters

is the first report showing the distribution of host mitochondria and trichocysts during algal relocalization beneath the host cell cortex. Fast cytoplasmic streaming after high-speed centrifugation of *P. bursaria* is the driving force for algal relocalization. The characteristic feature of rotational cytoplasmic streaming in the genus Paramecium (P. aurelia, P. caudatum, P. bursaria, P. *multimicronucleatum*, and *P. calkinsi*) is that the pattern of its route and direction remain constant (Sikora 1981). Various factors, such as cell division, conjugation, temperature, and osmotic pressure, are known to affect cytoplasmic streaming in Paramecium (Sikora 1981), but the detachment of the symbiotic algae by high-speed centrifugation is also a factor. In *P. bursaria–Chlorella* endosymbiosis, their cell cycle pace is guaranteed to be synchronous (Takahashi 2016). Takahashi et al. (2007) found that *P. bursaria* controls the proliferation of endosymbiotic algae through host-cell-cycle-dependent cytoplasmic streaming. Thus, host cytoplasmic streaming plays a major role in maintaining the number and cellular localization of symbiotic algae in P. bursaria cells. The mitochondria of the host *P. bursaria* are close to the PV membrane (Fig. 1), and their number and function are altered by the presence or absence of symbiotic algae (Kodama and Fujishima 2022). Therefore, host mitochondria and symbiotic algae are

expected to be strongly associated with each other. We assumed that the presence of

280 mitochondria was essential for the existence of symbiotic algae; however, the results in

Fig. 4 contradict this expectation. <u>Mitochondria and endoplasmic reticulum (ER) are</u>

282 <u>contact at ER-Mitochondria Contact Sites (EMCS)s. Lipids and Ca²⁺ synthesized in the</u>

ER are transported to mitochondria through the EMCSs (Kornmann et al. 2009; Rizzuto et al. 1998). Furthermore, EMCs is also important in reactive oxygen species (ROS) production (Booth et al. 2016) and autophagosome formation (Hamasaki et al. 2013). Song *et al.* (2017) reported that the host endoplasmic reticulumER is also involved in organizing intracellular algal symbiosis in the cytoplasm. The relationship between host mitochondria and symbiotic algae and the relationship between other cellular organelles, including the host endoplasmic reticulum, should be examined in detail in future studies. The exposure of *P. bursaria* cells to ultraviolet and photosynthetically active radiation is known to induce symbiotic algal dislocation, moving to the posterior cell region (Summerer et al. 2009). The displaced algae relocate to a "normal" distribution when host cells are transferred to a medium without ultraviolet radiation conditions. The mechanisms of algal displacement and relocation remain unclear (Summerer et al. 2009). A dislocation of *Chlorella* symbionts has also been described in the ciliate Pelagodileptus trachelioides (Butkay 2004). Although this phenomenon appears to be a stress reaction followed by host cytolysis, the details remain unknown. The method of artificial algal detachment and subsequent rapid reattachment by high-speed centrifugation of algae-bearing P. bursaria may contribute to understanding the mechanism of symbiotic algal localization in a variety of host species. Although the mechanism of PV localization beneath the host cell cortex is still unknown, the docking or distribution mechanism of mitochondria and uninserted trichocysts in other ciliate species, such as Paramecium tetraurelia, have been reported.

FEMS Microbiology Letters

305	Aufderheide (1977) reported that, in the subcortical regions of P. tetraurelia,
306	mitochondria and uninserted (undocked) trichocysts display saltatory motility with
307	individual characteristics, making them distinguishable from each other and from
308	cellular cyclosis. The saltatory motion of trichocysts is implicated as a means of
309	transporting new trichocysts from the cytoplasm to their ultimate location in the cellular
310	cortex. In addition, the saltatory motion may be a factor in the intracellular distribution
311	of the mitochondria. The mechanism of trichocyst docking at the Paramecium cell
312	membrane has been reported in detail (Plattner 2017; Plattner et al. 1982). Before
313	trichocyst docking, mature trichocysts move through the subcortical region by cyclosis
314	(Sikora 1981). Then, they approach, in a saltatory manner, tip first, a docking site at the
315	cell membrane (Aufderheide 1978); Thereby, trichocysts are guided by the same
316	"hand." This entity is a microtubule emanating from a nearby ciliary basal body
317	(Plattner <i>et al.</i> 1982), which always is situated ~ 0.5 to 1 μ m from a docking site proper.
318	Petrou et al. (2017) found that the intracellular algal symbionts within the large
319	photosymbiotic foraminifera Marginopora vertebralis exhibit phototactic behavior and
320	the phototactic movement of the symbionts is accomplished by the host through rapid
321	actin-mediated relocation of the symbionts deeper into the cavities within the calcite
322	skeletons. Thus, the host cytoskeleton plays a major role in the migration of host
323	cytosolic organelles and symbiotic algae. In order to study the involvement of the
324	cytoskeleton in the process of PV localization, the cell cortex of algae-bearing P.
325	bursaria cells was observed in detail by TEM. However, no cytoskeletal structure that
326	seems to be related to PV localization has been found until now (Kodama unpub. Data).

327	Adhesion just below the host cell surface is a universal phenomenon found not
328	only in cell organelles and symbiotic algae but also in pathogenic bacteria. Protists are
329	potential natural hosts of various bacterial species, including pathogens. Paramecium
330	caudatum could be a natural reservoir of Legionella pneumophila (Watanabe et al.
331	2016), and P. bursaria could be a potential host of Francisella novicida (Watanabe et
332	al. 2022). Francisella novicida is a facultative intracellular pathogen and a causative
333	agent of tularemia (Ellis et al. 2002). Recently, Watanabe et al. (2022) found that F.
334	novicida (strain U112) cells, which were wrapped with the host DV membrane,
335	localized beneath the host cell cortex. This indicates that both symbiotic algae and
336	bacteria can attach beneath the host cell cortex. Therefore, elucidation of the mechanism
337	of localization beneath the host cell cortex using P. bursaria is expected to contribute to
338	the development of not only symbiotic biology but also infectious disease research.
339	
340	References
341	Adoutte A. Exocytosis: Biogenesis, Transport and Secretion of Trichocysts. In: Görtz
342	HD (ed). Paramecium. Springer: Berlin, Heidelberg, 1988, 325-62.
343	
344	Allen RD. Acidosomes: recipients of multiple sources of membrane and cargo during
345	development and maturation. J Cell Sci 1993;106:411-22.
346	
347	Alberts D, Wiessner W. Nitrogen nutrition of endosymbiotic Chlorella spec. Endocyt
348	<i>Cell Res</i> 1985; 1 :55–64.
349	

2 3 4		
5 6	350	Albers D, Reisser W, Wiessner W. Studies on the nitrogen supply of endosymbiotic
7 8 9	351	chlorellae in green Paramecium bursaria. Plant Sci Lett 1982;25:85-90.
10 11	352	
12 13	353	Aufderheide KJ. Saltatory motility of uninserted trichocysts and mitochondria in
14 15 16	354	Paramecium tetraurelia. Science 1977;198:299–300.
17 18	355	
19 20 21	356	Aufderheide KJ. Motility events of trichocyst insertion in <i>Paramecium tetraurelia</i> . J
21 22 23	357	<i>Protozool</i> 1978; 25 :362–65.
24 25	358	
26 27 28	359	Blanc G, Duncan G, Agarkova I et al. The Chlorella variabilis NC64A genome reveals
29 30	360	adaptation to photosynthesis, coevolution with viruses, and cryptic sex. <i>The Plant Cell</i>
31 32	361	2010; 22 :2943–55.
33 34 25	362	
36 37	363	
38 39	364	Booth DM, Enyedi B, Geiszt M et al. Redox Nanodomains Are Induced by and Control
40 41 42	365	Calcium Signaling at the ER-Mitochondrial Interface. <i>Mol Cell</i> 2016; 63 :240–48.
42 43 44	366	
45 46	367	Brown JA, Nielsen PJ. Transfer of photosynthetically produced carbohydrate from
47 48	368	endosymbiotic <i>Chlorellae</i> to <i>Paramecium bursaria</i> . <i>J Protozool</i> 1974; 21 :569–70.
49 50 51	369	
52 53	370	Butkay M. Beobachtungen an <i>Pelagodileptus trachelioides</i> (Ciliophora). <i>Lauterbornia</i>
54 55	371	2004; 49 :129–40.
56 57 58 59 60	372	

373	Cheng YH, Liu CFJ, Yu YH et al. Genome plasticity in Paramecium bursaria revealed
374	by population genomics. BMC Biology 2020;18:180.
375	
376	Dryl S. Antigensic transformation in Paramecium aurelia after homologous antiserum
377	treatment during autogamy and conjugation. J Protozool 1959;6:25.
378	
379	Ellis J, Oyston PC, Green M et al. Tularemia. Clin Microbiol Rev 2002;15:631-46.
380	
381	Fujishima M, Kodama Y. Endosymbionts in Paramecium. Europ J Protistol
382	2012;48:124–37.
383	
384	Garreau De Loubresse N. Early steps of the secretory pathway in Paramecium:
385	ultrastructural, immunocytochemical, and genetic analysis of trichocyst biogenesis. In:
386	Plattner H (ed). Membrane Traffic in Protozoa, JAI Press, Greenwich (CT, USA),
387	London (GB), 1993, 27–59.
388	
389	
390	Gortz HD. Infections of <i>Paramecium bursaria</i> with bacteria and yeasts. <i>J Cell Sci</i> 1982;
391	58 :445–53.
392	
393	Gu FK, Chen L, Ni B, Zhang X. A comparative study on the electron microscopic
394	enzymo-cytochemistry of Paramecium bursaria from light and dark cultures. Eur J
395	Protistol 2002; 38 :267–78.
396	
1	

1	
2	
3	
4	
5	
6	
7	
, 0	
0	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
קו רכ	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
21	
21	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
12	
-⊤∠ /\2	
45	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
57	
54	
22	
56	
57	
58	
59	

397	
398	Hamasaki M, Furuta N, Matsuda A et al. Autophagosomes form at ER-mitochondria
399	contact sites. Nature 2013;495:389-93.
400	
401	Harumoto T. Defensive function of trichocysts in Paramecium. Jpn J Protozool
402	<u>2002;35:125–33.</u>
403	
404	Karakashian SJ, Rudzinska MA. Inhibition of lysosomal fusion with symbiont-
405	containing vacuoles in Paramecium bursaria. Exp Cell Res 1981;131:387-93.
406	
407	Kodama Y. Localization of attachment area of the symbiotic Chlorella variabilis of the
408	ciliate Paramecium bursaria during the algal removal and reinfection. Symbiosis
409	2013;60:25–36.
410	Kodama Y, Fujishima M. Infectivity of Chlorella species for the ciliate Paramecium
411	bursaria is not based on sugar residues of their cell wall components, but on their
412	ability to localize beneath the host cell membrane after escaping from the host digestive
413	vacuole in the early infection process. <i>Protoplasma</i> 2007;231:55–63.
414	
415	Kodama Y, Fujishima M. Localization of perialgal vacuoles beneath the host cell
416	surface is not a prerequisite phenomenon for protection from the host's lysosomal fusion
417	in the ciliate Paramecium bursaria. Protist 2009;160:319–29.
418	
419	Kodama Y, Fujishima M. Secondary symbiosis between Paramecium and Chlorella
420	cells. Int Rev Cell Mol Biol 2010;279:33–77.

421	
422	Kodama Y, Fujishima M. Endosymbiosis of Chlorella species to the ciliate
423	Paramecium bursaria alters the distribution of the host's trichocysts beneath the host
424	cell cortex. Protoplasma 2011;248:325–37.
425	
426	Kodama Y, Fujishima M. Synchronous induction of detachment and reattachment of
427	symbiotic Chlorella spp. from the cell cortex of the host Paramecium bursaria. Protist
428	2013; 164 :660–72.
429	
430	Kodama Y, Fujishima M. Endosymbiotic Chlorella variabilis reduces mitochondrial
431	number in the ciliate Paramecium bursaria. Sci Rep 2022;12:8216.
432	
433	Kodama Y, Inouye I, Fujishima M. Symbiotic Chlorella vulgaris of the ciliate
434	Paramecium bursaria plays an important role in maintaining perialgal vacuole
435	membrane functions. <i>Protist</i> 2011; 162 :288–303.
436	
437	Kornmann B, Currie E, Collins SR et al. An ER-mitochondria tethering complex
438	revealed by a synthetic biology screen. Science 2009;325:477-81.
439	
440	Petrou K, Ralph PJ, Nielsen DA. A novel mechanism for host-mediated photoprotection
441	in endosymbiotic foraminifera. ISME J 2017;11:453-62.

1	
2	
3	
4	
5	
5	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
∠∪ רב	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
22	
31	
24	
22	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
۲ <i>γ</i>	
_ 1 0 ⊿0	
49 E0	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
00	

443	Plattner H. Trichocysts-Paramecium's Projectile-like Secretory Organelles: Reappraisal
444	of their Biogenesis, Composition, Intracellular Transport, and Possible Functions. J
445	<i>Eukaryot Microbiol</i> 2017; 64 :106–33.
446	
447	Plattner H, Westphal C, Tiggemann R. Cytoskeleton secretory vesicle interactions
448	during the docking of secretory vesicles at the cell membrane in Paramecium
449	tetraurelia cells. J Cell Biol 1982;92:368–77.
450	
451	Reisser W. Endosymbiotic associations of freshwater protozoa and algae. In: Corliss
452	JO, Patterson DJ (eds). Progress in Protistology, Biopress Ltd, Bristol, 1986, 195–214.
453	
454	
455	Rizzuto R, Pinton P, Carrington W et al. Close contacts with the endoplasmic reticulum
456	as determinants of mitochondrial Ca2+ responses. Science 1998;280:1763-66.
457	
458	Sikora J. Cytoplasmic streaming in Paramecium. Protoplasma 1981;109:57-77.
459	
460	Song C, Murata K, Suzaki T. Intracellular symbiosis of algae with possible involvement
461	of mitochondrial dynamics. Sci Rep 2017;7:1221.
462	
463	
464	Summerer M, Sonntag B, Hörtnagl P et al. Symbiotic ciliates receive protection against
465	UV damage from their algae: A test with Paramecium bursaria and Chlorella. Protist
466	2009; 160 :233–43.

467	
468	Takahashi T. Simultaneous Evaluation of Life Cycle Dynamics between a Host
469	Paramecium and the Endosymbionts of Paramecium bursaria Using Capillary Flow
470	Cytometry. Sci Rep 2016;6:31638.
471	
472	Takahashi T, Shirai Y, Kosaka T et al. Arrest of Cytoplasmic Streaming Induces Algal
473	Proliferation in Green Paramecia. PLoS ONE 2007;12:e1352.
474	
475	Tsukii Y, Harumoto T, Yazaki K. Evidence for a viral macro-nuclear endosymbiont in
476	Paramecium caudatum. J Euk Microbiol 1995;42:109–15.
477	
478	Reisser W. The metabolic interactions between Paramecium bursaria Ehrbg. and
479	Chlorella spec. in the Paramecium bursaria-symbiosis. II. Symbiosis-specific
480	properties of the physiology and the cytology of the symbiotic unit and their regulation
481	(author's transl). Arch Microbiol 1976;111:161–70.
482	
483	Reisser W. The metabolic interactions between Paramecium bursaria Ehrbg. and
484	Chlorella spec. in the Paramecium bursaria-symbiosis. III. The influence of different
485	CO ₂ -concentrations and of glucose on the photosynthetic and respiratory of the
486	symbiotic unit. Arch Microbiol 1980;125:291–93.
487	
488	Reisser W. Endosymbiotic associations of freshwater protozoa and algae. Prog Protistol
489	1986;1:195–214.
490	

2 3		
4 5	491	Revnolds ES The use of lead citrate at high pH as an electron-opaque stain in electron
6 7	492	microscopy I Cell Biol 1963:17:208–12
9 10	102	
11 12	404	Sour AD A low viscosity analyzers in ambadding madium for algotron microscony.
13 14	494	Spuri AR. A low viscosity epoxy resin embedding medium for electron microscopy. <i>J</i>
15 16	495	<i>Ultrastruct Res</i> 1969; 26 :31–43.
17 18	496	
19 20 21	497	
21 22 23	498	Watanabe K, Nakao R, Fujishima M et al. Ciliate Paramecium is a natural reservoir of
24 25	499	Legionella pneumophila. Sci Rep 2016;6:24322.
26 27	500	
28 29	501	Watanabe K, Motonaga A, Tachibana M et al. Francisella novicida can
30 31 22	502	utilize Paramecium bursaria as its potential host. Envl Microbiol Rep 2022;14:50-9.
32 33 34		
35 36		
37 38		
39 40		
41 42		
43 44 45		
46 47		
48 49		
50 51		
52 53		
54 55		
56 57		
58 59 60		
00		2

Role of host ciliate Paramecium bursaria mitochondria and trichocysts for
symbiotic Chlorella variabilis attachment beneath the host cell cortex
Mitochondria and trichocysts of the ciliate Paramecium bursaria
Yuuki Kodama ¹ ,*, Masahiro Fujishima ^{2, †, ‡}
¹ Institute of Agricultural and Life Sciences, Academic Assembly, Shimane
University, 1060 Nishikawatsu-cho, Matsue-shi, Shimane 690-8504, Japan
² Department of Environmental Science and Engineering, Graduate School of
Science and Engineering, Yamaguchi University, Yoshida 1677-1, Yamaguchi
753-8512, Japan
[†] Present address: Research Center for Thermotolerant Microbial Resources,
Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8515, Japan
[‡] Institute of Environmental Radioactivity, Fukushima University, Kanayagawa 1,
Fukushima 960-1296, Japan
Corresponding author: Yuuki Kodama, Institute of Agricultural and Life
Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-cho,
Matsue-shi, Shimane 690-8504, Japan. Tel: -81-852-32-6438; E-mail:
kodama@life.shimane-u.ac.jp

One sentence summary: Although the host mitochondria of ciliate Paramecium *bursaria* are near symbiotic algae during reattachment, this does not mean that the algae can exist if mitochondria are present, indicating some localization bias within the host cell. Abstract Symbiotic *Chlorella variabilis* is encased in the perialgal vacuole (PV) membrane of ciliate *Paramecium bursaria*. The PV membrane is stably anchored below the host cell cortex by adhesion to host mitochondria. Host trichocysts, which are defensive organelles against predators, are present in the mitochondria and PV membrane vicinity. The mechanism by which PV attaches beneath the host cell cortex remains unknown. When *P. bursaria* is centrifuged at high speed, the symbiotic algae are displaced from the host cell cortex and concentrate at the posterior end. When centrifugation is stopped, the dislocated algae reattach beneath the host cell cortex with fast cytoplasmic streaming. The densities of mitochondria and trichocysts before and after centrifugation were compared using indirect immunofluorescence microscopy with monoclonal antibodies. Almost all trichocysts were shed by high-speed centrifugation, but dislocated algae could reattach even in the absence of trichocysts. In contrast, host mitochondria were unaffected in localization and number, and the dislocated algae also reattached. These findings suggest trichocysts are unnecessary for algal re-localization and that mitochondria are colocalized with the algae, unlike mitochondria. However, many mitochondria were also present in the cell's anterior region without symbiotic

44 algae. Therefore, not all areas with mitochondria contained algae, but there was a45 localization bias within the host cell.

47 Keywords: Algal reattachment, *Chlorella variabilis*, Endosymbiosis, Mitochondria,
48 *Paramecium bursaria*, Trichocyst

50 Introduction

Paramecium bursaria, a freshwater ciliate, is a symbiotic organism that establishes endosymbiotic relationships with *Chlorella* spp. Each symbiotic alga is enclosed in a perialgal vacuole (PV) derived from the host digestive vacuole (DV), which protects the alga from lysosomal fusion (Gu et al. 2002; Karakashian and Rudzinska 1981). This relationship between ciliates and algae is mutualistic; the host cell supplies algae with nitrogen and oxygen (Albers et al. 1982, 1985; Reisser 1976, 1980), whereas the algae provide the host with photosynthetic products (Brown et al. 1974; Reisser 1986) and CO₂ (Reisser 1980). However, both *P. bursaria* and symbiotic algae can live without their partners. The re-establishment of endosymbiosis between algae-free (removed) P. bursaria cells and symbiotic Chlorella cells isolated from algae-bearing hosts can be induced (Kodama and Fujishima 2010). In addition to their original symbiotic algae, algae-free P. bursaria cells can be reinfected with bacteria and yeast that are retained in the cytoplasm (Görtz 1982; Watanabe et al. 2022). The nuclear genomes of the symbiotic Chlorella variabilis (Blanc et al. 2010) and the host P. bursaria have been

FEMS Microbiology Letters

explored (Cheng *et al.* 2020); these organisms are now considered models forendosymbiosis research.

Using pulse-labeling and chasing of algae-free paramecia for 1.5 min with symbiotic algae that were isolated from algae-bearing *P. bursaria*, four important cytological events have been identified. These events are necessary for the establishment of endosymbiosis and the timing of each mechanism during the infection process (Kodama and Fujishima 2010). 1) Within 3 min of algal mixing, part of the algae has resistance to the host's lysosomal digestive enzymes in the DVs. 2) Within 30 min of mixing, algae in the DV begin budding from the DV membrane into the cytoplasm. 3) Within 15 min of budding from the DV, the DV membrane enclosing a single green *Chlorella* differentiates into a PV membrane. 4) The PV membrane translocates beneath the host cell cortex. The PV appears to localize near the host mitochondria and trichocysts. In previous studies, monoclonal antibodies against *P. bursaria* trichocysts and mitochondria were obtained; both mitochondrial and trichocyst densities of algae-bearing P. bursaria were significantly lower than those of algae-free cells (Kodama and Fujishima 2011, 2022). These results indicate that symbiotic algae compete for their attachment sites with preexisting trichocysts and mitochondria, and algae have the ability to ensure algal attachment sites beneath the host cell cortex (Kodama and Fujishima 2011). Furthermore, high-speed centrifugation can induce rapid algal detachment from the host cell cortex and concentrates the algae in the posterior end of the host cell (Kodama and Fujishima 2013). Within 10 min of centrifugation, the detached algae recover their

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
12	
14	
14	
15	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
37	
22	
22	
34 25	
35	
36	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
52	
55	
54	
22	
50 77	
5/	
58	
50	

1 2

> 87 original positions by host rapid cytoplasmic streaming. This algal reattachment was inhibited when host cytoplasmic streaming was arrested by nocodazole. In nocodazole-88 89 treated cells, approximately 5 h was required for complete algal recovery, and the host 90 cytoplasmic streaming had been resumed at that time. These results demonstrated that 91 adhesion of the PV beneath the host cell cortex can be repeatedly induced and that host 92 cytoplasmic streaming facilitates the recovery of algal attachment. However, the 93 mechanism by which the PV attaches beneath the host cell cortex remains unknown. In 94 this study, to investigate the mechanisms of symbiotic algal adhesion, the distribution of 95 mitochondria and trichocysts during reattachment was examined by 96 immunofluorescence microscopy using monoclonal antibodies against the mitochondria 97 and trichocysts. Furthermore, mitochondria of the anterior part of the host without terien symbiotic algae were also observed. 98 99 100 Materials and methods 101 Organism cultivation 102 Paramecium bursaria strain Yad1g1N cells (syngen B1 or R3, mating type I) harboring 103 the symbiotic *Chlorella variabilis* strain 1N were used (Kodama and Fujishima 2009, 104 2011). Paramecium cells were cultivated in red pea (Pisum sativum) extract culture 105 medium (Tsukii *et al.* 1995) with a modified Dryl's solution (Dryl 1959;)-(KH₂PO₄ 106 was used instead of NaH₂PO₄·2H₂O) and inoculated with *Klebsiella aerogenes* (ATCC

107 35028) one day before use. The cultures were in the early stationary phase of growth

108 one day after the final feeding. All cells used in this study were in this phase.

1	
2	
3	
4	
5	
5	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
22	
23	
24	
25	
25	
20	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
20	
27	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
ر. ۵۷	
40	
49 50	
50	
51	
52	
53	
54	
55	
56	
57	
52	
50	
22	

109	Cultivation was performed in test tubes (18 mm \times 180 mm) at 25 \pm 1°C under
110	fluorescent lighting at 20–30 µmol photons m ⁻² s ⁻¹ using an incandescent lamp.
111	
112	Transmission electron microscopy (TEM)
113	Algae-bearing P. bursaria were pre-fixed with 2% glutaraldehyde and prepared for
114	TEM, as described previously (Kodama et al. 2011). The paramecia embedded in
115	Spurr's resin (1969) were sectioned (70 nm thickness) using an ultramicrotome
116	(Reichert Ultracut S; Leica Microsystems, Vienna, Austria) with a diamond knife,
117	mounted on nickel mesh grids, and stained with lead citrate (Reynolds 1963). The
118	sections were observed using TEM (CM120; Philips) at 80 kV.
119	
120	High-speed centrifugation of <i>P. bursaria</i> cells
121	Algae-bearing P. bursaria cells were centrifuged at high speed (Kodama and Fujishima
122	2011). <i>P. bursaria</i> cells at a density of 5×10^3 cells/mL were placed in a 1.5 mL
123	microcentrifuge tube. The tube was then centrifuged using a fixed-angle rotor at 1000 \times
124	g for 1 min at $25 \pm 1^{\circ}$ C (Model 3740; Kubota Corporation, Tokyo, Japan). Before,
125	immediately after (approx. 3 min), 10 min, and 30 min after the centrifugation, aliquots
126	of <i>Paramecium</i> cells were air-dried on cover glasses (4.5 mm \times 24 mm) and fixed with
127	4% (w/v) paraformaldehyde dissolved in phosphate-buffered saline (PBS) (137 mM
128	NaCl, 2.68 mM KCl, 8.1 mM NaHPO ₄ ·12H ₂ O, 1.47 mM KH ₂ PO ₄ , pH 7.2) for 10 min
129	at 4°C.
130	

131	Indirect immunofluorescence	microscopy
-----	-----------------------------	------------

- The cover glasses with the fixed *P. bursaria* cells were washed with PBS containing
- 0.05% (v/v) Tween 20 (PBST) for 10 min at 4°C. The cells on the cover glasses were
- treated with a culture supernatant of hybridoma cells containing either monoclonal
- antibodies mAb5A11E2 against trichocysts of P. bursaria (Kodama and Fujishima
- 2011) or mAb2B8A8H1 against mitochondria of P. bursaria (Kodama and Fujishima
- 2022) overnight at 4°C, washed with PBS, and treated with Alexa Fluor 488 conjugated
- goat anti-mouse IgG (Molecular Probes Inc., Eugene, OR, USA) diluted 1000-fold with
- PBS for 2 h at 25°C. The cover glasses were then washed with PBS and observed under
- a differential interference contrast microscope and fluorescence microscope (BX53;
- Olympus Corp., Tokyo, Japan). Images were acquired using an Olympus DP74 system
 - and analyzed using Olympus cellSens Dimension software. Ne
- Statistical analysis
- Data were analyzed using the Mann-Whitney U-test in R. Reproducibility of the data
- was confirmed by three independent experiments.

- Results
 - Transmission electron microscopy (TEM) of algae-bearing *P. bursaria* Algae-bearing paramecia were observed using TEM (Fig. 1). As shown by the
- arrowhead in Fig. 1, we observed mitochondria that attach to the PVs, as shown in

1

2
3
4
4
5
6
7
8
0
9
10
11
12
13
14
14
15
16
17
18
10
17
20
21
22
23
20
24
25
26
27
28
29
20
50
31
32
33
34
35
36
50
37
38
39
40
10
47
42
43
44
45
46
10
40
40 40
49
50
51
52
52
55
54
55
56
57
50
58

60

previous studies (Fujishima and Kodama 2012; Song *et al.* 2017). In contrast, the
trichosyst membrane did not attach to the PV membrane (black arrow in Fig. 1).

155 Effects of high-speed centrifugation on distribution of trichocysts in

156 algae-bearing *P. bursaria* cells

Figure 2A shows the results obtained by indirect immunofluorescence microscopy after 157 158 high-speed centrifugation of algae-bearing *P. bursaria* cells using monoclonal 159 antibodies against trichocysts. Before centrifugation, symbiotic algae were shown 160 distributed throughout the host cell by differential interference contrast microscopy, and immunofluorescence showed that the trichocysts of the algae-bearing cells were 161 162 localized as a ring surrounding the algae, as shown in a previous study (Kodama and 163 Fujishima 2011). Immediately after centrifugation, the symbiotic algae dislocated and accumulated in the posterior region of Paramecium. As for trichocysts, 164 165 immunofluorescence was hardly observed in the centrifuged cells. When cells are 166 stimulated, trichocysts discharge their contents in milliseconds (Adoutte 1988). 167 Therefore, most trichocysts are discharged via high-speed centrifugation. In fact, we 168 observed many discharged trichocysts around the Parameciucm cells (Fig. 2B). The 169 monoclonal antibodies also distinguished after discharge, coinciding with findings in a 170 previous study (Kodama and Fujishima 2011) (Fig. 2B, IM). Ten minutes after 171 centrifugation, the algae completely localized beneath the host cortex, and few 172 trichocysts were observed by immunofluorescence microscopy. Thirty minutes after

2	
3	
4	
5	
5	
0	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
27	
5Z	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
10	
77 15	
45	
40	
4/	
48	
49	
50	
51	
52	
53	
54	
55	
56	
50	
57	
20 50	
59	
60	

173	centrifugation, trichocysts were barely observed. In fact, it was previously reported that
174	when the trichocysts are removed by treatment with lysozyme, regeneration of the
175	mature trichocysts begins at 3 h, even in the presence of lysozyme (Kodama and
176	Fujishima 2009). Therefore, it seems that 30 min are is not sufficient for the recovery of
177	trichocysts. These results clearly support previous studies (Kodama and Fujishima
178	2009) that the symbiotic algae do not need trichocysts to attach beneath the host cell
179	cortex.
180	Figure 2C shows the immunofluorescence intensity of <i>P. bursaria</i> cells before (x-
181	bar, T-B), immediately after (x-bar, T-Ia), 10 min (x-bar, T-10 min), and 30 min (x-bar,
182	T-30 min) after centrifugation. The immunofluorescence intensity of the centrifuged
183	cells decreased drastically and did not increase until 30 min after centrifugation. These
184	quantitative data correspond well with the images shown in Fig. 2A These quantitative-
185	data correspond well with the results of indirect immunofluorescence microscopy, as-
186	shown in Fig. 2A.
187	
188	
189	Effects of high-speed centrifugation on distribution of mitochondria in
190	algae-bearing <i>P. bursaria</i> cells
191	We examined the effect of high-speed centrifugation on host mitochondria by
192	immunofluorescence microscopy using the same method described above (Fig. 3).
193	Before centrifugation, immunofluorescence of mitochondria was observed around the
194	symbiotic algae. Immediately after centrifugation (approximately 3 min), the symbiotic

195	algae were dislocated, as shown above. Immunofluorescence was observed throughout
196	the cytoplasm. Note that the cortical mitochondrial immunofluorescence became strong
197	after centrifugation. This phenomenon may be due to better accessibility for
198	visualization of the labeling after detachment of the PV from the cortex. Ten and 30 min
199	after centrifugation, symbiotic algae were distributed throughout the cell because of
200	algal relocation. Immunofluorescence of mitochondria was also observed around the
201	symbiotic algae. These observations suggest that symbiotic algae do not need
202	trichocysts for their attachment but are colocalized with mitochondria for their
203	attachment, as shown by TEM observations (Fig. 1).
204	Figure 3B shows the immunofluorescence intensity of algae-free <i>P. bursaria</i> cells
205	before (x-bar, M-B), immediately after (x-bar, M-Ia), 10 min (x-bar, M-10 min), and 30
206	min (x-bar, M-30 min) after centrifugation. There was almost no change in
207	immunofluorescence intensity, and no significant difference was observed between the
208	data for each time point. These quantitative data correspond well with the images shown
209	in Fig. 3A This quantitative data corresponds well with the results of indirect
210	immunofluorescence microscopy, as shown in Fig. 3A.
211	
212	Mitochondrial distribution of host anterior cortex
213	Kodama (2013) investigated the symbiotic algal distribution of 14 strains of <i>P</i> .
214	bursaria. As a result, all strains had symbiotic algae at the ventral, dorsal, and posterior
215	cortexices, and some cells did not have symbiotic algae at the anterior cortex. This
-	

216 phenomenon is not strain-, syngen-, or mating-type specific. Only 35% of the strain

Yad1g1N cells, also used in this experiment, had symbiotic algae at their anterior cortex. This paper also reported that the artificial trichocyst-discharge experiments by the treatment of lysozyme clarified that trichocysts of the anterior cortex are difficult to remove. Altough the high-speed centrifugation experiment clearly showed that trichocysts are unnecessary for algal reattachment, trichocyst-discharge difficulty of the anterior cortex may be related to the restrict enrichment of the large PVs. It is unclear-why algae have difficulty adhering to the anterior cortex of their hosts. The high-speed centrifugation experiment clearly showed that trichocysts are unnecessary for algal-reattachment. On the other hand, host mitochondria remained unchanged in localization by high-speed centrifugation. This indicated that the presence of mitochondria might may be essential related for algal adhesion. To determine whether the reason for the algal difficulty in adhering to the host anterior cortex is due to the low mitochondrial density in this area, we examined whether there were differences in the number and distribution of mitochondria between cells with and without symbiotic algae in their anterior part using indirect immunofluorescence microscopy with the monoclonal antibodies against host mitochondria. Figure 4 shows differential interference contrast microscopy images of P. bursaria cells with (Algae+) and without (Algae-) symbiotic algae in the anterior end and immunofluorescence images of those cells using mitochondrial monoclonal antibodies.

237 Note that mitochondria are present in the anterior end without symbiotic algae as well

as in the anterior end with symbiotic algae. This observation shows that not all areaswith mitochondria had algae, but there was a localization bias within the host cell.

241 Discussion

Localization of endosymbionts near the host cell cortex is a universal phenomenon; the same phenomenon has been observed in other ciliate -algae or -cyanobacteria endosymbionts, such as Mayorella viridis, Coleps hirtus, Coleps spetai, Frontonia leucas, Malacophrys sphagni, Ophrydium versatile, Vorticella sp., Climacostomum virens, Euplotes daidaleos, Halteria bifurcata, Stentor polymorphus, and Stentor niger (Reisser 1986). Furthermore, the ability to adjust the intracellular symbiont position is likely an important means of optimizing carbon production (Petrou et al. 2017). A previous study showed that the infectivity of *Chlorella* species in *P. bursaria* is based on their ability to localize beneath the host cell membrane after escaping from the host digestive vacuole during the early infection process (Kodama and Fujishima 2007). Furthermore, this algal attachment may be related to the avoidance of host lysosomal digestion or fusion because algal digestion when the symbiotic algae are attached beneath the host cell cortex has not been observed (Kodama and Fujishima unpubl. data). Acidosomes are organelles responsible for the acidification of DVs before lysosomal fusion and are distributed throughout the cell (Allen 1993; Kodama 2013).

258 High-speed centrifugation can also induce the rapid accumulation of host acidosomes

and lysosomes at the anterior end of *Paramecium*. Within 10 min of centrifugation, the

3
4
5
6
7
8
0 0
10
10
11
12
13
14
15
16
17
18
19
20
20
∠ I วว
22
23
24
25
26
27
28
29
30
31
27
5Z 22
33
34
35
36
37
38
39
40
41
42
43
4J AA
 1 E
45
46
47
48
49
50
51
52
53
54
54
55
56
57
58
59
60

260	accumulated vesicles recover their original positions by host rapid cytoplasmic
261	streaming (Kodama 2013). This observation showed that although acidosomes and
262	lysosomes were dislocated by centrifugation, the mitochondria remained unchanged.
263	This is probably because acidosomes and lysosomes undergo cytoplasmic streaming,
264	but mitochondria do not.
265	Figure 5 shows a schematic representation of the algal attachment mechanism
266	beneath the host cell cortex after dislocation via high-speed centrifugation. After the
267	high-speed centrifugation, almost all trichocysts are released out of the cell. The
268	discharged trichocysts were regenerate from the endoplasmic reticulum, pass through
269	the Golgi apparatus, and undergo a maturation process (pretrichocysts) before mature
270	trichocysts are delivered to the cell membrane (Plattner 2017). Pretrichocysts contain a
271	growing mass of electron dense secretory material. The pretrichocysts then elongate
272	while their luminal space is progressively filled with crystallizing secretory materials
273	(Garreau De Loubresse 1993). Because several hours are required for regeneration after
274	trichocyst discharge (Harumoto 2002), no trichocysts are observed in the cells after
275	algal reattachment. This representation can be defined by obtaining monoclonal
276	antibodies against both mitochondria and trichocysts. To the best of our knowledge, this

277 is the first report showing the distribution of host mitochondria and trichocysts during

algal relocalization beneath the host cell cortex.

279 Fast cytoplasmic streaming after high-speed centrifugation of *P. bursaria* is the
280 driving force for algal relocalization. The characteristic feature of rotational cytoplasmic
281 streaming in the genus *Paramecium (P. aurelia, P. caudatum, P. bursaria, P.*

282	multimicronucleatum, and P. calkinsi) is that the pattern of its route and direction
283	remain constant (Sikora 1981). Various factors, such as cell division, conjugation,
284	temperature, and osmotic pressure, are known to affect cytoplasmic streaming in
285	Paramecium (Sikora 1981), but the detachment of the symbiotic algae by high-speed
286	centrifugation is also a factor. In P. bursaria-Chlorella endosymbiosis, their cell cycle
287	pace is guaranteed to be synchronous (Takahashi 2016). Takahashi et al. (2007) found
288	that <i>P. bursaria</i> controls the proliferation of endosymbiotic algae through host-cell ₋ ,
289	cycle-dependent cytoplasmic streaming. Thus, host cytoplasmic streaming plays a major
290	role in maintaining the number and cellular localization of symbiotic algae in P.
291	bursaria cells.

The mitochondria of the host *P. bursaria* are close to the PV membrane (Fig. 1), and their number and function are altered by the presence or absence of symbiotic algae (Kodama and Fujishima 2022). Therefore, host mitochondria and symbiotic algae are expected to be strongly associated with each other. We assumed that the presence of mitochondria was essential for the existence of symbiotic algae; however, the results in Fig. 4 contradict this expectation. Mitochondria and endoplasmic reticulum (ER) are contact at ER-Mitochondria Contact Sites (EMCS)s. Lipids and Ca²⁺ synthesized in the ER are transported to mitochondria through the EMCSs (Kornmann et al. 2009; Rizzuto *et al.* 1998). Furthermore, EMCs is also important in reactive oxygen species (ROS) production (Booth et al. 2016) and autophagosome formation (Hamasaki et al. 2013). Song et al. (2017) reported that the host endoplasmic reticulumER is also involved in organizing intracellular algal symbiosis in the cytoplasm. The relationship between host

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34 25
33 26
30 27
2/ 20
20
39 40
40 41
41 12
42 //3
45 44
45 45
46
40 47
48 48
49
50
51
52
53
54
55
56
57
58
59

1 2

mitochondria and symbiotic algae and the relationship between other cellular
organelles, including the host endoplasmic reticulum, should be examined in detail in
future studies.

307 The exposure of *P. bursaria* cells to ultraviolet and photosynthetically active 308 radiation is known to induce symbiotic algal dislocation, moving to the posterior cell 309 region (Summerer et al. 2009). The displaced algae relocate to a "normal" distribution 310 when host cells are transferred to a medium without ultraviolet radiation conditions. The 311 mechanisms of algal displacement and relocation remain unclear (Summerer et al. 312 2009). A dislocation of *Chlorella* symbionts has also been described in the ciliate 313 *Pelagodileptus trachelioides* (Butkay 2004). Although this phenomenon appears to be a 314 stress reaction followed by host cytolysis, the details remain unknown. The method of 315 artificial algal detachment and subsequent rapid reattachment by high-speed 316 centrifugation of algae-bearing *P. bursaria* may contribute to understanding the 317 mechanism of symbiotic algal localization in a variety of host species. 318 Although the mechanism of PV localization beneath the host cell cortex is still 319 unknown, the docking or distribution mechanism of mitochondria and uninserted 320 trichocysts in other ciliate species, such as Paramecium tetraurelia, have been reported. 321 Aufderheide (1977) reported that, in the subcortical regions of *P. tetraurelia*, 322 mitochondria and uninserted (undocked) trichocysts display saltatory motility with 323 individual characteristics, making them distinguishable from each other and from 324 cellular cyclosis. The saltatory motion of trichocysts is implicated as a means of 325 transporting new trichocysts from the cytoplasm to their ultimate location in the cellular
Page 71 of 80

FEMS Microbiology Letters

326	cortex. In addition, the saltatory motion may be a factor in the intracellular distribution
327	of the mitochondria. The mechanism of trichocyst docking at the Paramecium cell
328	membrane has been reported in detail (Plattner 2017; Plattner et al. 1982). Before
329	trichocyst docking, mature trichocysts move through the subcortical region by cyclosis
330	(Sikora 1981). Then, they approach, in a saltatory manner, tip first, a docking site at the
331	cell membrane (Aufderheide 1978); Thereby, trichocysts are guided by the same
332	"hand." This entity is a microtubule emanating from a nearby ciliary basal body
333	(Plattner <i>et al.</i> 1982), which always is situated ~ 0.5 to 1 μ m from a docking site proper.
334	Petrou et al. (2017) found that the intracellular algal symbionts within the large
335	photosymbiotic foraminifera Marginopora vertebralis exhibit phototactic behavior and
336	the phototactic movement of the symbionts is accomplished by the host through rapid
337	actin-mediated relocation of the symbionts deeper into the cavities within the calcite
338	skeletons. Thus, the host cytoskeleton plays a major role in the migration of host
339	cytosolic organelles and symbiotic algae. In order to study the involvement of the
340	cytoskeleton in the process of PV localization, the cell cortex of algae-bearing P.
341	bursaria cells was observed in detail by TEM. However, no cytoskeletal structure that
342	seems to be related to PV localization has been found until now (Kodama unpub. Data).
343	Adhesion just below the host cell surface is a universal phenomenon found not
344	only in cell organelles and symbiotic algae but also in pathogenic bacteria. Protists are
345	potential natural hosts of various bacterial species, including pathogens. Paramecium
346	caudatum could be a natural reservoir of Legionella pneumophila (Watanabe et al.
347	2016), and P. bursaria could be a potential host of Francisella novicida (Watanabe et

2 3 4	
5 6	3
7 8	3
9 10 11	3
11 12 13	3
14 15	3
16 17	3
18 19	3
20 21 22	2
22 23 24	
25 26	3
27 28	3
29 30	3
31 32 33	3
33 34 35	2
36 37	
38 39	Ċ
40 41	3
42 43	3
44 45 46	3
47 48	3
49 50	3
51 52	3
53 54	- -
55 56 57	Ċ
57 58 59	
60	

348 al. 2022). Francisella novicida is a facultative intracellular pathogen and a causative 349 agent of tularemia (Ellis et al. 2002). Recently, Watanabe et al. (2022) found that F. 350 novicida (strain U112) cells, which were wrapped with the host DV membrane, 351 localized beneath the host cell cortex. This indicates that both symbiotic algae and 352 bacteria can attach beneath the host cell cortex. Therefore, elucidation of the mechanism 353 of localization beneath the host cell cortex using P. bursaria is expected to contribute to 354 the development of not only symbiotic biology but also infectious disease research. 355 356 Funding: This work was supported by a Grant-in-Aid for Scientific Research (C) (Grant number 357 358 20K06768) from the Japan Society for the Promotion of Science (JSPS) and the 359 Institute for Fermentation (IFO; Osaka, Japan) to YK and Tokubetsukeihi from MEXT 360 to MF. The authors thank the faculty of Life and Environmental Sciences at Shimane University for financial support in publishing this report. 361 362 363 Acknowledgments: 364 Paramecium was provided by the NBRP Paramecium Laboratory, Yamaguchi 365 University, with support, in part, by the NBRP of the Ministry of Education, Culture, 366 Sports, Science, and Technology (MEXT). We would like to thank Editage 367 (www.editage.com) for English language editing. 368

1 2		
3 4 5		
6 7	369	Ethics declarations:
8 9 10	370	Consent to participate
11 12	371	All authors have their consent to participate.
13 14 15	372	Consent to publish
16 17	373	All authors have their consent to publish their work.
18 19 20	374	Contributions
20 21 22	375	Conceived and designed the experiments: YK and MF. Performed the experiments: YK.
23 24	376	Wrote the paper: YK and MF.
25 26 27	377	
28 29 20	378	Ethical approval
30 31 32	379	Not applicable.
33 34	380	Competing interests. The authors declare no competing interests.
35 36 37	381	
38 39	382	References
40 41	383	Adoutte A. Exocytosis: Biogenesis, Transport and Secretion of Trichocysts. In: Görtz
42 43 44	384	HD (ed). Paramecium. Springer: Berlin, Heidelberg, 1988, 325-62.
45 46	385	
47 48	386	Allen RD. Acidosomes: recipients of multiple sources of membrane and cargo during
49 50 51	387	development and maturation. J Cell Sci 1993;106:411-22.
52 53	388	
54 55	389	Alberts D, Wiessner W. Nitrogen nutrition of endosymbiotic Chlorella spec. Endocyt
50 57 58	390	<i>Cell Res</i> 1985;1:55–64.
59	391	

3 4		
5	392	Albers D, Reisser W, Wiessner W. Studies on the nitrogen supply of endosymbiotic
7 8 9	393	chlorellae in green Paramecium bursaria. Plant Sci Lett 1982;25:85-90.
10 11	394	
12 13	395	Aufderheide KJ. Saltatory motility of uninserted trichocysts and mitochondria in
14 15 16	396	Paramecium tetraurelia. Science 1977;198:299–300.
17 18	397	
19 20	398	Aufderheide KJ. Motility events of trichocyst insertion in <i>Paramecium tetraurelia</i> . J
21 22 23	399	<i>Protozool</i> 1978; 25 :362–65.
24 25	400	
26 27	401	Blanc G, Duncan G, Agarkova I et al. The Chlorella variabilis NC64A genome reveals
28 29 30	402	adaptation to photosynthesis, coevolution with viruses, and cryptic sex. The Plant Cell
31 32	403	2010; 22 :2943–55.
33 34	404	
35 36 37	405	
38 39	406	Booth DM, Enyedi B, Geiszt M et al. Redox Nanodomains Are Induced by and Control
40 41 42	407	Calcium Signaling at the ER-Mitochondrial Interface. <i>Mol Cell</i> 2016; 63 :240–48.
42 43	408	
44 45 46	409	Brown JA, Nielsen PJ. Transfer of photosynthetically produced carbohydrate from
47 48	410	endosymbiotic Chlorellae to Paramecium bursaria. J Protozool 1974;21:569-70.
49 50	411	
51 52 53	412	Butkay M. Beobachtungen an Pelagodileptus trachelioides (Ciliophora). Lauterbornia
55 54 55	413	2004; 49 :129–40.
56 57 58 59 60	414	

2 3 4		
5	415	Cheng YH, Liu CFJ, Yu YH et al. Genome plasticity in Paramecium bursaria revealed
7 8	416	by population genomics. BMC Biology 2020;18:180.
9 10 11	417	
12 13	418	Dryl S. Antigensic transformation in Paramecium aurelia after homologous antiserum
14 15	419	treatment during autogamy and conjugation. J Protozool 1959;6:25.
16 17 18	420	
19 20	421	Ellis J, Oyston PC, Green M et al. Tularemia. Clin Microbiol Rev 2002;15:631–46.
21 22	422	
23 24 25	423	Fujishima M, Kodama Y. Endosymbionts in Paramecium. Europ J Protistol
26 27	424	2012; 48 :124–37.
28 29	425	
30 31 32	426	Garreau De Loubresse N. Early steps of the secretory pathway in Paramecium:
33 34	427	ultrastructural, immunocytochemical, and genetic analysis of trichocyst biogenesis. In:
35 36	428	Plattner H (ed). Membrane Traffic in Protozoa, JAI Press, Greenwich (CT, USA),
37 38 39	429	London (GB), 1993, 27–59.
40 41	430	
42 43	431	
44 45 46	432	Gortz HD. Infections of Paramecium bursaria with bacteria and yeasts. J Cell Sci 1982;
47 48	433	58 :445–53.
49 50	434	
51 52	435	Gu FK, Chen L, Ni B, Zhang X. A comparative study on the electron microscopic
55 54 55	436	enzymo-cytochemistry of Paramecium bursaria from light and dark cultures. Eur J
56 57	437	<i>Protistol</i> 2002; 38 :267–78.
58 59 60	438	

439	
440	Hamasaki M, Furuta N, Matsuda A et al. Autophagosomes form at ER-mitochondria
441	<u>contact sites. Nature 2013;495:389–93.</u>
442	
443	Harumoto T. Defensive function of trichocysts in Paramecium. Jpn J Protozool
444	<u>2002;35:125–33.</u>
445	
446	Karakashian SJ, Rudzinska MA. Inhibition of lysosomal fusion with symbiont-
447	containing vacuoles in Paramecium bursaria. Exp Cell Res 1981;131:387-93.
448	
449	Kodama Y. Localization of attachment area of the symbiotic Chlorella variabilis of the
450	ciliate Paramecium bursaria during the algal removal and reinfection. Symbiosis
451	2013; 60 :25–36.
452	Kodama Y, Fujishima M. Infectivity of Chlorella species for the ciliate Paramecium
453	bursaria is not based on sugar residues of their cell wall components, but on their
454	ability to localize beneath the host cell membrane after escaping from the host digestive
455	vacuole in the early infection process. <i>Protoplasma</i> 2007; 231 :55–63.
456	
457	Kodama Y, Fujishima M. Localization of perialgal vacuoles beneath the host cell
458	surface is not a prerequisite phenomenon for protection from the host's lysosomal fusion
459	in the ciliate Paramecium bursaria. Protist 2009;160:319–29.
460	
461	Kodama Y, Fujishima M. Secondary symbiosis between Paramecium and Chlorella
462	cells. Int Rev Cell Mol Biol 2010;279:33–77.

1	
2	
2	
ر ۸	
4 7	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
10	
ער רכ	
20 21	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
25	
26	
30	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
51	
52	
53	
54 	
55	
56	
57	
58	
59	
60	

463	
464	Kodama Y, Fujishima M. Endosymbiosis of Chlorella species to the ciliate
465	Paramecium bursaria alters the distribution of the host's trichocysts beneath the host
466	cell cortex. <i>Protoplasma</i> 2011; 248 :325–37.
467	
468	Kodama Y, Fujishima M. Synchronous induction of detachment and reattachment of
469	symbiotic Chlorella spp. from the cell cortex of the host Paramecium bursaria. Protist
470	2013; 164 :660–72.
471	
472	Kodama Y, Fujishima M. Endosymbiotic Chlorella variabilis reduces mitochondrial
473	number in the ciliate Paramecium bursaria. Sci Rep 2022;12:8216.
474	
475	Kodama Y, Inouye I, Fujishima M. Symbiotic Chlorella vulgaris of the ciliate
476	Paramecium bursaria plays an important role in maintaining perialgal vacuole
477	membrane functions. <i>Protist</i> 2011; 162 :288–303.
478	
479	Kornmann B, Currie E, Collins SR et al. An ER-mitochondria tethering complex
480	revealed by a synthetic biology screen. Science 2009;325:477-81.
481	
482	Petrou K, Ralph PJ, Nielsen DA. A novel mechanism for host-mediated photoprotection
483	in endosymbiotic foraminifera. ISME J 2017;11:453–62.
484	

485	Plattner H. Trichocysts-Paramecium's Projectile-like Secretory Organelles: Reappraisal
486	of their Biogenesis, Composition, Intracellular Transport, and Possible Functions. J
487	Eukaryot Microbiol 2017;64:106–33.
488	
489	Plattner H, Westphal C, Tiggemann R. Cytoskeleton secretory vesicle interactions
490	during the docking of secretory vesicles at the cell membrane in Paramecium
491	<i>tetraurelia</i> cells. <i>J Cell Biol</i> 1982; 92 :368–77.
492	
493	Reisser W. Endosymbiotic associations of freshwater protozoa and algae. In: Corliss
494	JO, Patterson DJ (eds). Progress in Protistology, Biopress Ltd, Bristol, 1986, 195–214.
495	
496	
497	Rizzuto R, Pinton P, Carrington W et al. Close contacts with the endoplasmic reticulum
498	as determinants of mitochondrial Ca ²⁺ responses. Science 1998;280:1763-66.
499	
500	Sikora J. Cytoplasmic streaming in <i>Paramecium</i> . Protoplasma 1981;109:57-77.
501	
502	Song C, Murata K, Suzaki T. Intracellular symbiosis of algae with possible involvement
503	of mitochondrial dynamics. Sci Rep 2017;7:1221.
504	
505	
506	Summerer M, Sonntag B, Hörtnagl P et al. Symbiotic ciliates receive protection against
507	UV damage from their algae: A test with Paramecium bursaria and Chlorella. Protist
508	2009; 160 :233–43.

Takahashi T. Simultaneous Evaluation of Life Cycle Dynamics between a Host

Cytometry. Sci Rep 2016;6:31638.

Paramecium and the Endosymbionts of Paramecium bursaria Using Capillary Flow

Takahashi T, Shirai Y, Kosaka T et al. Arrest of Cytoplasmic Streaming Induces Algal

Tsukii Y, Harumoto T, Yazaki K. Evidence for a viral macro-nuclear endosymbiont in

Reisser W. The metabolic interactions between Paramecium bursaria Ehrbg. and

Reisser W. The metabolic interactions between Paramecium bursaria Ehrbg. and

CO₂-concentrations and of glucose on the photosynthetic and respiratory of the

Chlorella spec. in the Paramecium bursaria-symbiosis. III. The influence of different

properties of the physiology and the cytology of the symbiotic unit and their regulation

Chlorella spec. in the Paramecium bursaria-symbiosis. II. Symbiosis-specific

Proliferation in Green Paramecia. PLoS ONE 2007;12:e1352.

Paramecium caudatum. J Euk Microbiol 1995;42:109–15.

(author's transl). Arch Microbiol 1976;111:161–70.

symbiotic unit. Arch Microbiol 1980;125:291-93.

1986;**1**:195–214.

1 2 3	
4 5 6	509
7 8	510
9 10 11	511
12 13	512
14 15	513
16 17 19	514
19 20	515
21 22	516
23 24	517
25 26 27	518
28 29	519
30 31	520
32 33 34	521
35 36	522
37 38	523
39 40 41	524
42 43	525
44 45	526
46 47 48	527
40 49 50	528
51 52	529
53 54	530
55 56 57	531
57 58 59	532
60	

2
ScholarOne Support 1-434/964-4100

Reisser W. Endosymbiotic associations of freshwater protozoa and algae. Prog Protistol

lectron opy. J
lectron opy. J
ору. <i>J</i>
ору. Ј
ору. Ј
voir of
;0–9.